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We consider an N by N real or complex generalized Wigner matrix HN , whose entries are independent centered
random variables with uniformly bounded moments. We assume that the variance profile, sij := E|Hij |2, satisfies∑N

i=1 sij = 1, for all 1 ≤ j ≤ N and c−1 ≤ Nsij ≤ c for all 1 ≤ i, j ≤ N with some constant c ≥ 1. We establish
Gaussian fluctuations for the linear eigenvalue statistics of HN on global scales, as well as on all mesoscopic
scales up to the spectral edges, with the expectation and variance formulated in terms of the variance profile. We
subsequently obtain the universal mesoscopic central limit theorems for the linear eigenvalue statistics inside the
bulk and at the edges, respectively.
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1. Introduction

1.1. Linear eigenvalue statistics of Wigner matrices

A Wigner matrix HN is an N ×N matrix whose entries are independent real or complex valued random
variables up to the symmetry constraint HN = H ∗

N . Wigner matrices with real or complex Gaussian
entries are known as the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Unitary Ensemble
(GUE), respectively. The celebrated Wigner semicircle law [68] states that the empirical eigenvalue
distribution of HN converges to the semicircle distribution with density ρsc(x) := 1

2π

√
4 − x21[−2,2].

More precisely, denoting by (λi)
N
i=1 the eigenvalues of HN , for any sufficiently regular test function

f , the linear statistics 1
N

∑N
i=1 f (λi) − ∫

R
f (x)ρsc(x)dx converges in probability to zero as N → ∞,

which can be understood as a Law of Large Numbers.
It is then natural to derive the corresponding Central Limit Theorem (CLT), that is, the Gaussian

fluctuations of the linear eigenvalue statistics

N∑
i=1

f (λi) −E

[
N∑

i=1

f (λi)

]
. (1.1)

The linear statistics (1.1) need not be normalized by N− 1
2 as in the classical CLT, which can be ex-

plained by the strong correlations among eigenvalues. Khorunzhy, Khoruzhenko and Pastur [49] proved
a CLT for the trace of the resolvent of Wigner matrices. Johansson [48] derived Gaussian fluctuations
for the linear eigenvalue statistics of invariant ensembles, including the GUE and GOE. Bai and Yao [8]
used a martingale method to extend the CLTs to arbitrary Wigner matrices and analytic test functions.
The regularity conditions on the test functions were weakened by Lytova and Pastur [59], Shcherbina
[62] via the characteristic function of (1.1), and more recently by Sosoe and Wong [67] who obtained
the CLT for H 1+ε test functions.
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The fluctuations of the linear eigenvalue statistics on mesoscopic scales, that is,

N∑
i=1

f

(
λi − E0

η0

)
−E

[
N∑

i=1

f

(
λi − E0

η0

)]
, (1.2)

with fixed energy E0 ∈ (−2,2) and scale parameter N−1 	 η0 	 1, were first studied by Boutet de
Monvel and Khorunzhy [17] for the GOE given the test function f (x) = (x − i)−1. They subsequently

extended their results to real Wigner matrices [18] with N− 1
8 	 η0 	 1. A Mesoscopic CLT for the

GUE was obtained by Fyodorov, Khoruzhenko and Simm [38], and was extended by Lodhia and Simm
[58] to complex Wigner matrices on scales N−1/3 	 η0 	 1. He and Knowles [42] improved these
CLTs on optimal mesoscopic scales N−1 	 η0 	 1 for all Wigner matrices. They also studied the two
point correlation function of Wigner matrices on mesoscopic scales in [43]. More recently, Landon and
Sosoe [52] obtained similar CLTs by studying the characteristic function of (1.2).

Mesoscopic linear eigenvalue statistics can also be studied at the spectral edges, where the meso-

scopic scale ranges over N− 2
3 	 η0 	 1. Basor and Widom [10] used asymptotics of the Airy kernel to

derive Gaussian fluctuations of the linear eigenvalue statistics of the GUE at the edges. Min and Chen
[61] subsequently extended this result to the GOE. Adhikari and Huang [1] proved the mesoscopic

CLT for the Dyson Brownian motion at the edges down to the optimal scale η0 
 N− 2
3 in a short time.

Recently, Schnelli and the authors [57] obtained mesoscopic CLT for deformed Wigner matrices at
regular edges, where the spectral density has square-root behaviors.

Besides Wigner matrices, mesoscopic CLTs were also obtained in many other random matrices en-
sembles, e.g., random band matrices [26,27], sparse Wigner matrices [41], Dyson Brownian motion
[25,46,53], invariant β-ensembles [11,14,50], orthogonal polynomial ensembles [19], classical com-
pact groups [66], circular β ensembles [51], and free sum of matrices [9].

1.2. Generalized Wigner matrices

In this paper, we are interested in the linear eigenvalue statistics for generalized Wigner matrices,
which were introduced in [36]. Let HN = (Hij )

N
i,j=1 be an N by N matrix with independent but not

identically distributed centered random variables up to the symmetry constraint HN = H ∗
N . Denote

by S ≡ SN the matrix of variances, that is, S := (sij )
N
i,j=1, with sij = E|Hij |2. We assume that S is

symmetric and doubly stochastic, i.e.,

N∑
i=1

sij = 1, for all 1 ≤ j ≤ N. (1.3)

We say HN is a generalized Wigner matrix if the size of sij is comparable with N−1, that is, there
exists c ≥ 1 independent of N such that

c−1 ≤ Nsij ≤ c, for all 1 ≤ i, j ≤ N. (1.4)

Standard Wigner matrices are a special case of generalized Wigner matrices, with sij = N−1 for all
1 ≤ i, j ≤ N . The first condition in (1.3) guarantees that the limiting spectral measure of HN is given
by the semicircle law; see [7,39,64]. Without the condition (1.3), the limiting eigenvalue distribution is
characterized by the Dyson equation and were classified in [3]. Local laws of such general Wigner-type



Linear statistics of generalized Wigner matrices 1059

matrices were obtained in [4,5] and bulk universality was then established in [4], while the edge and
cusp universality were derived in [5,6,22,32].

The second assumption (1.4) is a sufficient condition for generalized Wigner matrices to demonstrate
the same local eigenvalue statistics as standard Wigner matrices. Universality for the local eigenvalue
statistics of generalized Wigner matrices was obtained in [14,35,37] for the bulk and in [13,36,55] for
the edges. For random band matrices, the condition (1.4) is not satisfied. We refer to [15,16,29] for
results on local laws and bulk universality, and to [65] for edge universality.

Consider now a special variance matrix S with sij = 1
N

f ( i
N

,
j
N

), where f ∈ C([0,1] × [0,1]) is a

non-negative, symmetric function such that
∫ 1

0 f (x, y)dy ≡ 1. A CLT for the linear eigenvalue statis-
tics of such matrices was obtained in [7] by studying its generating function via combinatorial enu-
meration, with the variance formulated as an infinite series. Global CLTs for random band matrices
were obtained in [47,56,63], while the mesoscopic linear statistics were studied in [26,27]. Fluctua-
tions of the linear eigenvalue statistics on global scales for many familiar classes of random matrices
were also studied in [20], where a unified technique was formulated for deriving such CLTs using sec-
ond order Poincaré inequalities, without an explicit formula for the variance. Under this framework,
CLTs for linear eigenvalue statistics of Wigner matrices with general variance profiles were obtained
in [2]. Global fluctuations of block Gaussian matrices with variance profiles were proved within the
framework of second-order free probability theory, see [24] and references therein. In addition, CLTs
on global scales for large sample covariance matrices given a general variance profile were discussed
in [40].

In the present paper, we consider generalized Wigner matrices with matrix of variances S satisfying
(1.3) and (1.4). We derive Gaussian fluctuations for the linear eigenvalue statistics (1.2), with explicit
integral formulas for the variance and expectation in terms of the matrix of variances S, at fixed energy
E0 ∈ [−2,2] on scales N−1 	 η0 ≤ 1 such that η0

√
η0 + κ0 
 N−1, where κ0 = κ0(E0) denotes the

distance from E0 to the closest edge of the semicircle law; see Theorem 2.2. This range of η0 covers
the global scales as well as all mesoscopic scales up to the spectral edges. Furthermore, we obtain the
universal CLTs on all mesoscopic scales, for energies E0 in the bulk and at the edges respectively, by
computing the variances and expectations explicitly considering mesoscopic-scaled test functions; see
Theorem 2.4. The limiting law is universal, only depending on the symmetry class, and is independent
of the scaling η0 and the energy E0.

The proof of our main technical result Proposition 4.1 is provided in Section 4. We follow the idea
of [52,59] to study the characteristic function of the linear eigenvalue statistics (1.2). Via the Helffer–
Sjöstrand functional calculus, we write the derivative of the characteristic function in terms of the
resolvent of HN , and then cut off the ultra-mesoscopic scales of the spectral domain, see (4.4), since
the very local scales do not contribute to the mesoscopic linear statistics. The benefit is that on the
restricted spectral domain, the resolvent of HN is controlled effectively by the local laws [30,36]. We
subsequently apply the cumulant expansions (see Lemma 4.2) to solve the right-hand side of (4.4). This
technique was first used in random matrix theory by [49] and in recent papers, for example, [31,42,54,
59]. The key tools to estimate the error in Proposition 4.1 are the (isotropic) local laws for the resolvent
[6,12,31,44] and the fluctuation averaging estimates [28,29,45,69]. One of the main technical achieve-
ments is to find a weak local law for the two point function Tab(z, z

′) := ∑N
j=1,j =b sajGjb(z)Gjb(z

′),
with different spectral parameters z, z′; see Lemma 4.3 with proof in Section 5. Compared with the
standard Wigner matrices [42,52], the two point function Tab(z, z

′) cannot be written as a matrix prod-
uct and hence the resolvent identity (5.15) or cyclicity of trace no longer help. Similar two point func-
tions of the resolvents appeared in [9,21,23,33] to derive Gaussian fluctuations of the linear eigenvalue
statistics for different random matrix ensembles. The proof of Lemma 4.3 is inspired by the fluctuation
averaging mechanism [28], combined with recursive moment estimates based on cumulant expansions.
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A special case z = z̄ was studied previously in [28,45,69], and our statements are for arbitrary param-
eters z, z′ ∈ C \R. In addition, we end Section 4 by estimating the expectation of the linear eigenvalue
statistics and then complete the proof of Theorem 2.2.

Notation. We will use the following definition on high-probability estimates from [28].

Definition 1.1. Let X ≡ X (N) and Y ≡ Y(N) be two sequences of nonnegative random variables. We
say Y stochastically dominates X if, for all (small) ε > 0 and (large) D > 0,

P
(
X (N) > NεY(N)

) ≤ N−D, (1.5)

for sufficiently large N ≥ N0(ε,D), and we write X ≺ Y or X = O≺(Y).

We often use the notation ≺ also for deterministic quantities, then (1.5) holds with probability one.
Properties of stochastic domination can be found in Lemma 3.4.

For any vector v ∈ C
N , let ‖v‖sup := maxN

i=1 |vi | be the sup norm. For any matrix A ∈ C
N×N , the

matrix norm induced by the sup vector norm are given by ‖A‖∞ := max1≤i≤N

∑N
j=1 |Aij |. We also

write ‖A‖sup := maxi,j |Aij |.
Throughout the paper, we use c and C to denote strictly positive constants that are independent of N .

Their values may change from line to line. We use standard Big-O and little-o notations. For X,Y ∈R,
we write X 	 Y if there exists a small τ > 0 such that |X| ≤ N−τ |Y | for large N . Moreover, we write
X ∼ Y if there exist constants c,C > 0 such that c|Y | ≤ |X| ≤ C|Y | for large N . Finally, we denote
the upper half-plane by C

+ : = {z ∈C : Im z > 0}.

2. Main results

Let H ≡ HN be an N × N real or complex generalized Wigner matrix satisfying the following as-
sumption.

Assumption 2.1. For real (β = 1) generalized Wigner matrix, we assume that

1. {Hij |i ≤ j} are independent real-valued centered random variables with Hij = Hji .
2. Let S ≡ SN denote the matrix of variances, i.e., S := (sij )

N
i,j=1 with sij = E|Hij |2. There exist

constants 0 < Cinf ≤ Csup < ∞ such that

N∑
i=1

sij ≡ 1; Cinf ≤ inf
N,i,j

Nsij ≤ sup
N,i,j

Nsij ≤ Csup. (2.1)

3. All moments of the entries of
√

NHN are uniformly bounded, that is, for any k ∈ N, there exists
Ck independent of N such that for all 1 ≤ i, j ≤ N ,

E|√NHij |k ≤ Ck. (2.2)

For complex (β = 2) generalized Wigner matrix, we assume that
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(a) {ReHij , ImHij |i ≤ j} are independent real-valued centered random variables with Hij = Hji .
(b) The same moment conditions 2 and 3 hold and E[H 2

ij ] = 0 for i = j .

For a probability measure ν on R, denote by mν its Stieltjes transform, that is,

mν(z) : =
∫
R

dν(x)

x − z
, z ∈ C

+. (2.3)

Note that mν : C+ → C
+ is analytic and can be analytically continued to the real line outside the sup-

port of ν. Moreover, mν satisfies limη↗∞ iηmν(iη) = −1. The Stieltjes transform of the semicircle law
μsc := ρsc(x)dx = 1

2π

√
4 − x21[−2,2] dx, denoted by msc, is defined as the unique analytic solution

C
+ →C

+ satisfying

m2
sc(z) + zmsc(z) + 1 = 0. (2.4)

Fix the energy E0 ∈ [−2,2] and set N−1 	 η0 ≤ 1. Consider a scaled test function

f ≡ fN(x) := g

(
x − E0

η0

)
, g ∈ C2

c (R). (2.5)

Define the distance between the support of f and the nearest edge of the semicircle law,

κ0 := dist
(
supp(f ), {−2,2}). (2.6)

Then we have the following CLT for the linear eigenvalue statistics of HN .

Theorem 2.2. Let HN be a generalized Wigner matrix satisfying Assumption 2.1 and assume that
η0

√
κ0 + η0 ≥ N−1+c0 for some constant c0 > 0. Then there exists a small constant 0 < τ <

c0
16 such

that the following statements hold. For f as in (2.5), define

V (f ) := − 1

4π2

∫
�1

∫
�2

f̃ (z)f̃
(
z′){ 2

β
Tr

(
m′

sc(z)m
′
sc(z

′)S
(1 − msc(z)msc(z′)S)2

)
+ 2k4msc(z)m

′
sc(z)msc

(
z′)m′

sc

(
z′)

+ TrS

(
1 − 2

β

)
m′

sc(z)m
′
sc

(
z′)}dz dz′, (2.7)

where

• k4 is the summation of the forth cumulants (see (4.6) and (4.21)) of both real and imaginary parts
of all entries {Hij };

• f̃ is an almost-analytic extension of f , that is,

f̃ (x + iy) := (
f (x) + iyf ′(x)

)
χ(y), (2.8)

where χ : R → [0,1] is a smooth cutoff function with support in [−2,2] and with χ(y) = 1, for
|y| ≤ 1;
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• the contours �k(k = 1,2) are given by {z ∈ C : | Im z| = 1
k
N−τ η0} with counterclockwise orienta-

tion.

If there exist constants c,C > 0 such that c < V (f ) < C, then

Trf (HN) −ETrf (HN)√
V (f )

d−→ N (0,1).

Moreover, the so-called bias is given by

ETrf (HN) − N

∫
R

f (x)ρsc(x)dx

= 1

2π i

∫
�1

f̃ (z)

{(
2

β
− 1

)
Tr

(
m′

sc(z)m
3
sc(z)S

2

1 − m2
sc(z)S

)

+ k4m
′
sc(z)m

3
sc(z)

}
dz + O≺

(
N2τ

(Nη0
√

κ0 + η0)1/4

)
+ O≺

(
N−τ

)
. (2.9)

Remark 2.3. We remark that Theorem 2.2 applies to the global scales as well as optimal mesoscopic
scales up to the spectral edges. The formulas for the variance (2.7) and the bias (2.9) coincide with the
corresponding results for standard Wigner matrices [52,57] where sij = N−1 for all 1 ≤ i, j ≤ N .

Finally, we obtain the following mesoscopic CLTs for the linear eigenvalue statistics in the bulk and
at the edges, respectively.

Theorem 2.4 (Universal mesoscopic CLTs). Let HN be a generalized Wigner matrix satisfying As-
sumption 2.1. Fix any E0 ∈ (−2,2), and set N−1+c1 ≤ η0 ≤ N−c1 for some small c1 > 0. For any
function g ∈ C2

c (R), the mesoscopic linear statistics in the bulk

N∑
i=1

g

(
λi − E0

η0

)
− N

∫
R

g

(
x − E0

η0

)
ρsc(x)dx

d−→N
(

0,
1

βπ

∫
R

|ξ |∣∣ĝ(ξ)
∣∣2 dξ

)
,

where ĝ(ξ) := (2π)−1/2
∫
R

g(x)e−iξx dx.
In addition, set E0 = ±2 and N−2/3+c2 ≤ η0 ≤ N−c2 for some small c2 > 0. Then the mesoscopic

linear statistics at the edges

N∑
i=1

g

(
λi − E0

η0

)
− N

∫
R

g

(
x − E0

η0

)
ρsc(x)dx

d−→ N
((

2

β
− 1

)
g(0)

4
,

1

2βπ

∫
R

|ξ |∣∣ĥ(ξ)
∣∣2 dξ

)
,

where h(x) := g(∓x2), and ĥ(ξ) := (2π)−1/2
∫
R

h(x)e−iξx dx.

Remark 2.5. The means and variances of the limiting laws in Theorem 2.4 agree with the correspond-
ing results for the Gaussian ensembles. See [17,38,60] for the bulk and [10,61] for the edges. Such edge
formulas were also obtained in other ensembles, for example, Dyson Brownian motion [1], deformed
Wigner matrices and sample covariance matrices [57].



Linear statistics of generalized Wigner matrices 1063

3. Preliminaries

In this section, we introduce some preliminary results that will be used in the proof.

3.1. Properties of the Stieltjes transform of the semicircle law

In this subsection, we recall some properties of msc . Let κ = κ(E) be the distance from E to the closest
spectral edge of the semicircle law, that is,

κ := min
{|E + 2|, |E − 2|}. (3.1)

Define the spectral domain

D := {
z = E + iη : |E| ≤ 5,0 < η ≤ 10

}
. (3.2)

Lemma 3.1 (Lemma 4.2 in [35], Lemma 6.2 in [34]). We have the following estimates.

1. For any z ∈ D, there exists a constant c > 0 such that

c ≤ ∣∣msc(z)
∣∣ ≤ 1 − cη. (3.3)

2. For all z ∈ D, we have

∣∣Immsc(z)
∣∣ ∼

⎧⎨⎩
√

κ + η, if |E| ≤ 2,
η√

κ + η
, otherwise.

(3.4)

3. For all z ∈ D, there exist some constants c,C > 0 such that

c
√

κ + η ≤ ∣∣1 − m2
sc(z)

∣∣ ≤ C
√

κ + η. (3.5)

4. For all z ∈ D, we have∣∣msc(z)
∣∣ ∼ 1; ∣∣m′

sc(z)
∣∣ ∼ 1√

κ + η
; ∣∣m′′

sc(z)
∣∣ = O

(
1√

(κ + η)3

)
. (3.6)

3.2. Properties of the variance matrix S

In this subsection, we state some properties of the matrix of variances S, which is crucial in studying
the local laws of the generalized Wigner matrices. Recall that S = (sij )

N
i,j=1 is the matrix of variances

satisfying (2.1), and S is deterministic, symmetric and doubly stochastic with strictly positive entries.

Hence, 1 is the largest eigenvalue, with eigenvector e := N− 1
2 (1,1, . . . ,1)T . By the Perron–Frobenius

theorem, the largest eigenvalue 1 is simple and all other eigenvalues are strictly less than 1 in absolute
value. Define δ± to be the spectral gaps satisfying

Spec(S) ⊂ [−1 + δ−,1 − δ+] ∩ {1}.
It is not hard to show that

δ± ≥ Cinf > 0,

provided S satisfies (2.1). Combining with (3.3), 1 − msc(z)msc(z
′)S is invertible. Thus, we have the

following estimates.
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Lemma 3.2. Define � := eeT with e = N− 1
2 (1,1, . . . ,1)T . For any z, z′ ∈ D or z, z′ ∈ D, there exists

C > 0 such that∥∥∥∥ 1

1 − msc(z)msc(z′)S

∥∥∥∥∞
≤ C

|1 − msc(z)msc(z′)| ,
∥∥∥∥ 1 − �

1 − msc(z)msc(z′)S

∥∥∥∥∞
≤ C,

where the constant C depends on Cinf and Csup in (2.1).

Similar statements can be found in Lemma 6.3 [34] for z = z′, and the proof also applies to two
parameters z, z′. In particular, we have from (3.5) that for all z ∈ D,

ρ :=
∥∥∥∥ 1

1 − m2
sc(z)S

∥∥∥∥∞
≤ C

∣∣∣∣ 1

1 − m2
sc(z)

∣∣∣∣ ∼ 1√
κ + η

. (3.7)

We also have a trivial lower bound, ρ ≥ 1
|1−m2

sc(z)| ≥ 1
2 , since e is an eigenvector of S and |msc(z)| ≤ 1.

3.3. Local law for the resolvent of HN

Denote by (λi)
N
i=1 the eigenvalues of HN . We define the empirical spectral measure of HN by

μN(x) := 1
N

∑N
i=1 δλi

. The Stieltjes transform of μN is then given by

mN(z) :=
∫
R

dμN(λ)

λ − z
= N−1 TrG(z), with G(z) := (HN − zI)−1, z ∈C \R. (3.8)

The function G(z) is referred to as the resolvent or Green function of HN . The semicircle law states
that for any fixed z away from the real line, mN(z) converges in probability to msc(z) as N tends to
infinity. It can be extended down to the local scales Im z 
 N−1. We introduce the spectral domain,

D′ := {
z = E + iη : |E| ≤ 5,N−1+τ ≤ η ≤ 10

}
, (3.9)

for any constant τ > 0, and define two deterministic control parameters for z = E + iη ∈C \R,

� ≡ �(z) :=
√

Immsc(z)

N |η| + 1

N |η| , � ≡ �(z) := 1

N |η| . (3.10)

With estimates of msc(z) in Lemma 3.1, it is easy to check

CN− 1
2 ≤ �(z) 	 1, z ∈ D′. (3.11)

We have the following (isotropic) local laws for the resolvent of HN , which is an essential tool in our
proof.

Theorem 3.3 (Theorem 2.3 in [30], Theorem 2.12 in [12], (3.8) in [28]). Let HN be a generalized
Wigner matrix satisfying Assumption 2.1. The following estimates hold uniformly in z ∈ D′:

max
i,j

∣∣Gij (z) − δijmsc(z)
∣∣ ≺ �(z); ∣∣mN(z) − msc(z)

∣∣ ≺ �(z). (3.12)
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Furthermore, we also have for all z ∈ D′,

max
i

∣∣∣∣∣
N∑

j=1

sijGjj (z) − msc(z)

∣∣∣∣∣ ≺ ρ�2(z), (3.13)

with ρ in (3.7). For any deterministic unit vectors v,w ∈ C
N and all z ∈ D′, we have∣∣〈v,G(z)w

〉 − msc(z)〈v,w〉∣∣ ≺ �(z). (3.14)

Finally, we end this section with properties of stochastic domination defined in (1.5).

Lemma 3.4 (Proposition 6.5 in [34]).

1. X ≺ Y and Y ≺ Z imply X ≺ Z;
2. If X1 ≺ Y1 and X2 ≺ Y2, then X1 + X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2;
3. If X ≺ Y , EY ≥ N−c and |X| ≤ Nc almost surely with some fixed exponent c, then we have

EX ≺ EY .

4. Proof of Theorems 2.2 and 2.4

We define the characteristic function of the linear eigenvalue statistics

φ(λ) := E
[
e(λ)

]
, where e(λ) := exp

{
iλ

(
Trf (HN) −ETrf (HN)

)}
, λ ∈R. (4.1)

Then the characteristic function φ satisfies the following proposition.

Proposition 4.1. Under the same conditions as in Theorem 2.2, if η0
√

κ0 + η0 ≥ N−1+c0 for some
c0 > 0, then there exists a constant 0 < τ <

c0
16 such that for any fixed λ ∈R, the characteristic function

φ(λ) satisfies

φ′(λ) = −λφ(λ)V (f ) + O≺
(|λ| logNN−τ

) + O≺
(

(1 + |λ|4)N4τ

(Nη0
√

κ0 + η0)
1
4

)
.

Admitting Proposition 4.1, integrating φ′(λ) and applying the Arzelá-Ascoli theorem and Lévy’s
continuity theorem, we prove the Gaussian fluctuations for the linear statistics, as stated in Theo-
rem 2.2. Given the scaled test function (2.5), we compute the variances (2.7) and biases (2.9) on
mesoscopic scales in the bulk and at the edges respectively, and then conclude Theorem 2.4. Simi-
lar arguments for deformed Wigner matrices can be found in Section 6 [57] and we omit them in the
present paper.

Proof of Proposition 4.1. Via the Helffer-Sjöstrand functional calculus (see (4.10) of [52] for a ref-
erence), we translate the linear eigenvalue statistics of f (HN) to the Green function of HN . More
precisely, for any f in (2.5),

Trf (HN) = 1

π

∫
C

∂

∂z
f̃ (z)Tr

(
G(z)

)
d2z, (4.2)
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where ∂
∂z

= 1
2 ( ∂

∂x
+ i ∂

∂y
), f̃ (z) is an almost-analytic extension of f given in (2.8) and d2z is the

Lebesgue measure on C. As observed in [52], the ultra-local scales do not contribute to the mesoscopic
linear statistics. So we restrict the domain of the spectral parameter to

�0 := {
z ∈ C : | Im z| ≥ N−τ η0

}
, (4.3)

for a small constant τ > 0. Notice that G(z) is analytic in C \R. Taking derivative of the characteristic
function φ(λ) in (4.1) and applying Stokes’ formula, we have

φ′(λ) = 1

2π

∫
�1

f̃ (z)E
[
e0(λ)(Tr

(
G(z) −ETrG(z)

)]
dz + O≺

(|λ| logNN−τ
)
, (4.4)

where

e0(λ) := exp

{
λ

2π

∫
�2

f̃
(
z′)(Tr

(
G

(
z′)) −ETrG

(
z′))dz′

}
, (4.5)

with �1,2 given in Theorem 2.2. More details can be found in [52,57]. Here we choose slightly
different contours to avoid singularities. Thus, in order to study φ′(λ), it suffices to estimate
E[(e0(λ)(Tr(G(z)) −ETrG(z))].

To simplify the proof, we will only consider the real symmetric case (β = 1). The proof for the
complex case (β = 2) is similar. Before we proceed the proof, we introduce the following cumulant
expansion formula, see [42] for a reference.

Lemma 4.2 (Cumulant expansion formula). Let h be a real-valued random variable with finite mo-
ments, and f is a complex-valued smooth function on R with bounded derivatives. Let c(k)(h) be the
k-th cumulant of h given by

c(k)(h) := (−i)k
dk

dtk

(
logE

[
eith])∣∣∣∣

t=0
. (4.6)

Then for any fixed l ∈ N, we have

E
[
hf (h)

] =
l∑

k=0

1

k!c
(k+1)(h)E

[
dk

dhk
f (h)

]
+ Rl+1, (4.7)

where the error Rl+1 satisfies

|Rl+1| ≤ ClE
[|h|l+2] sup

|x|≤M

∣∣f (l+1)(x)
∣∣ + ClE

[|h|l+21|h>M|
]

sup
x∈R

∣∣f (l+1)(x)
∣∣, (4.8)

and M > 0 is an arbitrary fixed cutoff.

By the definition of the resolvent and applying the cumulant expansion (4.6) for l = 3, we have (c.f.
(5.6) in [57])

zE
[
e0(λ)(TrG −ETrG)

] = E
[
e0(λ)

(
Tr(HG) −ETr(HG)

)] = I1 + I2 + I3 + R4, (4.9)

where Ik (k = 1,2,3) denote the expansion terms associated with the (k + 1)-cumulant, and R4 is the
error given in (4.8). In the following, we estimate each term on the RHS of (4.9) using the identity

∂Gij

∂Hab

= −GiaGbj + GibGaj

1 + δab

, 1 ≤ a, b ≤ N. (4.10)
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Similar arguments for deformed Wigner matrices can also be found in Section 5 [57], so we omit most
computation details. First, it is not hard to check that R4 = O≺(N−1/2(1 + |λ|4)), by using the local
law (3.12), the moment condition (2.2) and Lemma 3.4.

Next, we look at the first term I1. Using the local law (3.13), I1 can be written as (c.f. Section 5.1
and Lemma 5.1 [57])

I1 = −
N∑

i=1

E

[
e0(λ)(1 −E)

(
N∑

j=1

sijGjj (z)Gii(z)

)]

−
N∑

i=1

E

[
e0(λ)(1 −E)

(
(i)∑

j=1

sijGji(z)Gji(z)

)]

− λ

π

N∑
i=1

E

[
e0(λ)

∫
�2

f̃
(
z′) ∂

∂z′

(
N∑

j=1

1

1 + δij

sijG
(
z′)

ji
Gji(z)

)
dz′

]

= − 2msc(z)E
[
e0(λ)(1 −E)TrG

] −E
[
e0(λ)(1 −E)TrT (z, z)

]
− λ

π
E

[
e0(λ)

∫
�2

f̃
(
z′) ∂

∂z′ TrT
(
z, z′)dz′

]
− λTrS

2π
E

[
e0(λ)

] ∫
�2

f̃
(
z′)msc(z)m

′
sc

(
z′)dz′

+ O≺
(
Nρ�3(z)

) + O≺
( |λ|√

Nη0

)
+ O≺

(|λ|�(z)
)
, (4.11)

where we define the following two point function for short,

Tab

(
z, z′) :=

(b)∑
j=1

sajGjb(z)Gjb

(
z′), 1 ≤ a, b ≤ N,z, z′ ∈ C \R, (4.12)

with
∑(b)

j=1 := ∑N
j=1,j =b . The following local laws for the matrix T (z, z′) := (Tab(z, z

′))ab are proved
in Section 5.

Lemma 4.3. For all 1 ≤ a, b ≤ N and z, z′ ∈ D′ in (3.9), we have

Tab

(
z, z′) =

(
m2

sc(z)m
2
sc(z

′)S2

1 − msc(z)msc(z′)S

)
ab

+ O≺
(
ρ2�

3
2 (z)�

(
z′) + ρ2�(z)�

3
2
(
z′)), (4.13)

where ρ2 ≡ ρ2(z, z
′) := (1 − msc(z)msc(z

′))−1. Moreover, we have the following estimate of the trace
of T (z, z′):

TrT
(
z, z′) = Tr

(
m2

sc(z)m
2
sc(z

′)S2

1 − msc(z)msc(z′)S

)
+ ET

(
z, z′), (4.14)

where the error ET (z, z′) is analytic in z, z′ ∈ C \R and for all z, z′ ∈ D′, it satisfies∣∣ET

(
z, z′)∣∣ ≺ N�

3
2 (z)�

(
z′) + N�(z)�

3
2
(
z′) + N�2(z) + N�(z)�

(
z′). (4.15)
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The above results also hold true when z and z′ are in different half planes, that is, they also hold true
for all z, z′ ∈ D′.

Remark 4.4. We remark that the above local law is not optimal. If we further expand (5.9) in the proof
below, the error in (4.13) can be improved to O≺(ρ2�

2(z)�(z′) + ρ2�(z)�2(z′)). But Lemma 4.3 is
sufficient to establish the CLTs for the linear statistics, so we do not aim at the optimal local law in the
present paper.

Notice that T (z, z′) is analytic in z, z′ ∈ C \ R. Taking the partial derivative of TrT (z, z′) in (4.14)
and applying the Cauchy integral formula, we have

∂

∂z′ TrT
(
z, z′) = Tr

(
msc(z)m

′
sc(z

′)S
(1 − msc(z)msc(z′)S)2

)
− msc(z)m

′
sc

(
z′)TrS

+ O≺
(

N�
3
2 (z)�(z′) + N�(z)�

3
2 (z′) + N�2(z) + N�(z)�(z′)

| Im z′|
)

. (4.16)

Plugging (4.14) (for z = z′) and (4.16) into (4.11), we hence obtain that

I1 = − 2msc(z)E
[
e0(λ)(1 −E)TrG

] + λTrS

2π
E

[
e0(λ)

] ∫
�2

f̃
(
z′)msc(z)m

′
sc

(
z′)dz′

− λ

π
E

[
e0(λ)

] ∫
�2

f̃
(
z′)Tr

(
msc(z)m

′
sc(z

′)S
(1 − msc(z)msc(z′)S)2

)
dz′ + E1(z), (4.17)

where the error E1(z) is collected from (4.11), (4.15) (for z = z′) and (4.16). Since g is compactly
supported, we have κ0 ≤ κ ≤ C(κ0 + η0) with κ and κ0 given in (3.1) and (2.6). Using (2.5), (3.4),
(3.7) and (3.10), the error E1(z) satisfies∣∣E1(z)

∣∣ ≺ (
1 + |λ|)N2τ (

1√
Nη0

+ �(z) + Nρ�3(z) + N�2(z) + �(z)η−1
0 + N�5/2(z)

+ N�
3
2 (z)

(
(κ0 + η0)

1
4√

Nη0
+ 1

Nη0

)
+ N�(z)

(
(κ0 + η0)

3
8

(Nη0)
3
4

+ 1

(Nη0)
3
2

)
. (4.18)

By direct computations and the isotropic local law (3.14), one shows that the second term I2 corre-
sponding to third cumulants is negligible (c.f. Section 5.2 [57]),

I2 = O≺
(

(1 + |λ|2)N2τ�(z)√
η0

)
+ O≺

(√
N�2(z)

)
. (4.19)

It is also straightforward to check that (c.f. Section 5.3 and Lemma 5.1 [57])

I3 = − k4λ

2π
E

[
e0(λ)

∫
�2

f̃
(
z′) ∂

∂z′
(
m2

sc(z)m
2
sc

(
z′))dz′

]
+ O≺

(
(1 + |λ|3)N2τ

√
Nη0

)
, (4.20)

where k4 is the summation of all the fourth cumulants, that is,

k4 :=
N∑

i,j=1

c
(4)
ij (Hij ) = E

[
H 4

ij

] − 3
(
E

[
H 2

ij

])2
. (4.21)



Linear statistics of generalized Wigner matrices 1069

Plugging (4.17), (4.19) and (4.20) into (4.9) and rearranging, we obtain that(
z + 2msc(z)

)
E

[
e0(λ)(1 −E)TrG

] = − λ

2π
E

[
e0(λ)

] ∫
�2

f̃
(
z′)K̃(

z, z′)dz′ + Ẽ(z), (4.22)

where the kernel K̃(z, z′) is given by

K̃
(
z, z′) = 2 Tr

(
msc(z)m

′
sc(z

′)S
(1 − msc(z)msc(z′)S)2

)
− msc(z)m

′
sc

(
z′)TrS + 2k4m

2
sc(z)msc

(
z′)m′

sc

(
z′),

and Ẽ(z) is the error collected from (4.18)-(4.20). Dividing both sides of (4.22) by z + 2msc(z) =
−msc(z)

m′
sc(z)

∼ √
κ + η from (2.4) and (3.6), and plugging it into (4.4), we hence obtain that the character-

istic function satisfies

φ′(λ) = −λE
[
e0(λ)

]
V (f ) + O≺

(
(1 + |λ|4)N4τ

(Nη0
√

κ0 + η0)
1
4

)
+ O≺

(|λ|N−τ
)
,

where V (f ) is given in (2.7) and we use (2.5), (3.4) and (3.10) to estimate the error. Note that |e(λ) −
e0(λ)| ≺ |λ|N−τ . If V (f ) ≺ O(1), then we replace e0(λ) by e(λ) at the cost of O≺(|λ|N−τ ). This
completes the proof of Proposition 4.1. �

We end up this section with the estimate of E[TrG(z)] − Nmsc(z) in a similar way and obtain the
bias formula for the general linear statistics.

Proof of Equation (2.9). Using the definition of resolvent and the cumulant expansion (4.7) on
zE[TrG(z) − Nmsc(z)], in combination with the local laws in Theorem 3.3 and Lemma 4.3, we have
the analogue of (4.22), that is,

(
z + 2msc(z)

)
E

(
TrG(z) − Nmsc(z)

) = − Tr

(
m4

sc(z)S
2

1 − m2
sc(z)S

)
− k4m

4
sc(z)

+ O≺
(
Nρ�3) + O≺

(
N�5/2) + O≺

(
N�2), (4.23)

where ρ is given by (3.7), and k4 is defined in (4.21). Dividing both sides by z + 2msc(z) and trans-
forming E[TrG(z)]−Nmsc(z) to the bias of the linear statistics via the Heffler-Strösjand formula (4.2)
and Stokes’ formula, we obtain (2.9) and conclude the last statement of Theorem 2.2. �

Remark 4.5. The results in Section 4 extend directly from real symmetric (β = 1) to complex Her-
mitian (β = 2) matrices. The only difference is to apply the complex analogue of cumulant expansion
formula and

∂Gij

∂Hab
= −GiaGbj instead of (4.10). Similar arguments can be found in Appendix A [57],

and we omit them here.

5. Proof of Lemma 4.3

In this section, we prove a local law for the two point function T (z, z′) defined in (4.12). For notational
simplicity, we write T ≡ T (z, z′), m1 := msc(z), m2 := msc(z

′) and define the control parameter �2 :=
�

3
2 (z)�(z′) + �(z)�

3
2 (z′). We aim to prove that

Pab := − 1

m1
Tab + m2(ST )ab + m1m

2
2

(
S2)

ab
= O≺(�2). (5.1)
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Due to (2.4) and the relation zG = HG − I , we write

Pab =
(b)∑
j=1

saj (HG)jb(z)Gjb

(
z′) + m1Tab + m2(ST )ab + m1m

2
2

(
S2)

ab
. (5.2)

Set Mp,q := (Pab)
p(P ∗

ab)
q for any p,q ∈N for short. For any d ∈ N, applying the cumulant expansion

(4.7), we have

E|Pab|2d = E

[(
(b)∑
j=1

N∑
k=1

saj sjk

∂Gkb(z)Gjb(z
′)

∂Hjk

)
Md−1,d

]

+E

[(
(b)∑
j=1

N∑
k=1

saj sjkGkb(z)Gjb

(
z′))(d − 1)

∂Pab

∂Hjk

Md−2,d

]

+E

[(
(b)∑
j=1

N∑
k=1

saj sjkGkb(z)Gjb

(
z′))d

∂P ∗
ab

∂Hjk

Md−1,d−1

]
+ R2

+E
[(

m1Tab + m2(ST )ab + m1m
2
2

(
S2)

ab

)
Md−1,d

]
:= J1 + J2 + J3 + R2 + J4, (5.3)

where R2 is the error of cumulant expansion, see (4.8) for l = 1. We first show that R2 is negligible.
We write G(1) := G(z), G(2) := G(z′), �1 := �(z) and �2 := �(z′) for short. Using identity (4.10)
and the local law (3.12), for general α ∈N, we have

∣∣∣∣∂αG
(1)
kb G

(2)
jb

∂Hα
jk

∣∣∣∣ ≺ �1�2 + δjb + δkb. (5.4)

We obtain from (4.10) and (5.1) that

∂Pab

∂Hjk

= − 1

m1

∂Tab

∂Hjk

+ m2

N∑
i=1

sai

∂Tib

∂Hjk

= −
(b)∑
l=1

(
1

m1
sal − m2

(
S2)

al

)
× (

G
(1)
lj G

(1)
kb G

(2)
lb + G

(1)
lk G

(1)
jb G

(2)
lb + G

(1)
lb G

(2)
lj G

(2)
kb + G

(1)
lb G

(2)
lk G

(2)
jb

)
. (5.5)

In general, for any α ∈N, the local law (3.12) implies that,∣∣∣∣∂αPab

∂Hα
jk

∣∣∣∣ ≺ �2
1�2 + �1�

2
2 + δjb�1�2 + δkb�1�2. (5.6)
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Similarly, the estimate (5.6) still holds true for
∂αP ∗

ab

∂Hα
jk

for general α ∈ N. Using the moment condition

(2.2), (5.4), (5.6) and (3.11), we hence obtain that

R2 = E
[
O≺(�1)Md−1,d

] +E
[
O≺

(
�2

1

)
Md−2,d

] +E
[
O≺

(
�2

1

)
Md−1,d−1

]
+E

[
O≺

(
�3

1

)
Md−3,d

] +E
[
O≺

(
�3

1

)
Md−2,d−1

] +E
[
O≺

(
�3

1

)
Md−1,d−2

]
, (5.7)

where we define a new control parameter �1 := �2
1�2 + �1�

2
2 	 �2.

Next, we look at the first term J1. Using (4.10) and the local law (3.12), we write

J1 = −E

[
(b)∑
j=1

N∑
k=1

saj sjk

(
m1G

(1)
jb G

(2)
jb + m2G

(1)
kb G

(2)
kb

)
Md−1,d

]
+E

[
O≺(�1)Md−1,d

]

= −E

[(
m1Tab + m2

N∑
j=1

saj Tjb + m1m
2
2(S)2

ab

)
Md−1,d

]
+E

[
O≺(�1)Md−1,d

]
. (5.8)

Note that the leading term of J1 will cancel J4. As for the second term J2, using (5.5) and simple power
counting by the local law (3.12), we have

J2 = (d − 1)E

[(
(b)∑
j=1

N∑
k=1

saj sjkGkb(z)Gjb

(
z′)) ∂Pab

∂Hjk

Md−2,d

]
= E

[
O≺

(
�2

2

)
Md−2,d

]
. (5.9)

We treat J3 similarly and get J3 = E[O≺(�2
2)Md−1,d−1]. Therefore, we obtain that

E|Pab|2d = E
[
O≺(�1)M(d − 1, d)

] +E
[
O≺

(
�2

2

)
Md−1,d−1

] +E
[
O≺

(
�2

2

)
Md−2,d

]
+E

[
O≺

(
�3

1

)
Md−3,d

] +E
[
O≺

(
�3

1

)
Md−2,d−1

] +E
[
O≺

(
�3

1

)
Md−1,d−2

]
. (5.10)

Applying the Young’s inequality to the RHS of (5.10) and using �1 	 �2, we get E|Pab|2d ≺ �2d
2 for

any d ∈ N and thus |Pab| ≺ �2. Using |msc(z)| ∼ 1, the matrix (T )ab defined in (5.1) hence satisfies

(1 − m1m2S)T = m2
1m

2
2S

2 +R
(
z, z′), (5.11)

where the error matrix R≡R(z, z′) has the following estimate:∥∥R(
z, z′)∥∥

sup = O≺
(
�

3
2 (z)�

(
z′)) + O≺

(
�(z)�

3
2
(
z′)). (5.12)

Combining with the first estimate from Lemma 3.2, we hence prove (4.13).
Next, we continue to estimate the trace of the two point function T (z, z′). Recall the projection

matrix � = ee∗, where e = N− 1
2 (1,1, . . . ,1)∗. Note that �S = S� = �. Multiplying both sides of

(5.11) by (1 − �)(1 − m1m2S)−1, we have

(1 − �)T = m2
1m

2
2

S2 − �

1 − m1m2S
+ 1 − �

1 − m1m2S
R.

Using the second estimates in Lemmas 3.2 and (5.12), we obtain that

TrT = Tr(�T ) + Tr

(
m2

1m
2
2(S

2 − �)

1 − m1m2S

)
+ O≺

(
N�

3
2 (z)�

(
z′)) + O≺

(
N�(z)�

3
2
(
z′)). (5.13)
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For the first term on the RHS of (5.13), we write it as

Tr(�T ) = 1

N

N∑
b=1

(b)∑
j

Gjb(z)Gjb

(
z′) = 1

N
Tr

(
G(z)G

(
z′)) − 1

N

N∑
b=1

Gbb(z)Gbb

(
z′). (5.14)

To estimate (5.14), we separate our argument into two cases:

1. For z = z′, using the resolvent identity

G(z)G
(
z′) = 1

z − z′
(
G(z) − G

(
z′)), (5.15)

and the local law (3.12), we have

Tr(�T ) = mN(z) − mN(z′)
z − z′ − msc(z)msc

(
z′) + O≺

(
�(z)

) + O≺
(
�

(
z′)).

If z, z′ are in different half planes, then |z − z′| ≥ | Im z| and thus from (3.12),

mN(z) − mN(z′)
z − z′ = msc(z) − msc(z

′)
z − z′ + O≺

(
�(z)

|Imz|
)

+ O≺
(

�(z′)
|Imz|

)
.

If z and z′ are in the same half-plane, without loss of generality, we assume z, z′ ∈C
+. If |Imz −

Imz′| ≥ 1
2 Imz, the previous argument still applies. Otherwise, we have 1

2 Imz ≤ Imz′ ≤ 3
2 Imz.

Since d(z) := mN(z) − msc(z) is analytic in z ∈ C
+, applying the Cauchy integral formula, we

obtain that ∣∣∣∣d(z) − d(z′)
z − z′

∣∣∣∣ ≤ sup
ω∈L(z,z′)

∣∣d ′(ω)
∣∣ = O≺

(
�(z)

|Imz|
)

,

where L(z, z′) denotes the segment connecting z and z′. Therefore, we have

Tr(�T ) = msc(z) − msc(z
′)

z − z′ − msc(z)msc

(
z′) + O≺

(
�(z) + �(z′)

|Imz|
)

. (5.16)

2. For z = z′, using the identity G2(z) = d
dz

G(z), the local law (3.12) and the Cauchy integral
formula, we have

Tr(�T ) = d

dz
mN(z) − 1

N

N∑
b=1

(
Gbb(z)

)2 = m′
sc(z) − m2

sc(z) + O≺
(

�(z)

| Im z|
)

. (5.17)

In addition, we use the Taylor expansion on (1 − m1m2S)−1 and the relation �S = S� = � to get

Tr

(
m2

1m
2
2�

1 − m1m2S

)
= m2

1m
2
2

1 − m1m2
. (5.18)

Plugging (5.16) (or (5.17) for z = z′) and (5.18) into (5.13), we conclude from (2.4) that (4.14) and
(4.15) hold. This complete the proof of Lemma 4.3.
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[23] Cipolloni, G., Erdős, L. and Schröder, D. (2019). Central limit theorem for linear eigenvalue statistics of
non-Hermitian random matrices. Available at arXiv:1912.04100.

[24] Diaz, M., Mingo, J.A. and Belinschi, S.T. (2020). On the global fluctuations of block Gaussian matrices.
Probab. Theory Related Fields 176 599–648. MR4055196 https://doi.org/10.1007/s00440-019-00925-1

[25] Duits, M. and Johansson, K. (2018). On mesoscopic equilibrium for linear statistics in Dyson’s Brownian
motion. Mem. Amer. Math. Soc. 255 v+118. MR3852256 https://doi.org/10.1090/memo/1222
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