Open Access
November 2016 Aggregation of autoregressive random fields and anisotropic long-range dependence
Donata Puplinskaitė, Donatas Surgailis
Bernoulli 22(4): 2401-2441 (November 2016). DOI: 10.3150/15-BEJ733

Abstract

We introduce the notions of scaling transition and distributional long-range dependence for stationary random fields $Y$ on $\mathbb{Z}^{2}$ whose normalized partial sums on rectangles with sides growing at rates $O(n)$ and $O(n^{\gamma})$ tend to an operator scaling random field $V_{\gamma}$ on $\mathbb{R}^{2}$, for any $\gamma>0$. The scaling transition is characterized by the fact that there exists a unique $\gamma_{0}>0$ such that the scaling limits $V_{\gamma}$ are different and do not depend on $\gamma$ for $\gamma>\gamma_{0}$ and $\gamma<\gamma_{0}$. The existence of scaling transition together with anisotropic and isotropic distributional long-range dependence properties is demonstrated for a class of $\alpha$-stable $(1<\alpha\le2)$ aggregated nearest-neighbor autoregressive random fields on $\mathbb{Z}^{2}$ with a scalar random coefficient $A$ having a regularly varying probability density near the “unit root” $A=1$.

Citation

Download Citation

Donata Puplinskaitė. Donatas Surgailis. "Aggregation of autoregressive random fields and anisotropic long-range dependence." Bernoulli 22 (4) 2401 - 2441, November 2016. https://doi.org/10.3150/15-BEJ733

Information

Received: 1 December 2014; Revised: 1 March 2015; Published: November 2016
First available in Project Euclid: 3 May 2016

zbMATH: 1356.60082
MathSciNet: MR3498033
Digital Object Identifier: 10.3150/15-BEJ733

Keywords: $\alpha$-stable mixed moving average , autoregressive random field , contemporaneous aggregation , isotropic/anisotropic long-range dependence , lattice Green function , operator scaling random field , scaling transition

Rights: Copyright © 2016 Bernoulli Society for Mathematical Statistics and Probability

Vol.22 • No. 4 • November 2016
Back to Top