Open Access
Translator Disclaimer
March 2013 Full Robustness in Bayesian Modelling of a Scale Parameter
Alain Desgagné
Bayesian Anal. 8(1): 187-220 (March 2013). DOI: 10.1214/13-BA808


Conflicting information, arising from prior misspecification or outlying observations, may contaminate the posterior inference in Bayesian modelling. The use of densities with sufficiently heavy tails usually leads to robust posterior inference, as the influence of the conflicting information decreases with the importance of the conflict. In this paper, we study full robustness in Bayesian modelling of a scale parameter. The log-slowly, log-regularly and log-exponentially varying functions as well as log-exponential credence (LE-credence) are introduced in order to characterize the tail behaviour of a density. The asymptotic behaviour of the marginal and the posterior is described and we find that the scale parameter given the complete information converges in distribution to the scale given the non-conflicting information, as the conflicting values (outliers and/or prior’s scale) tend to 0 or , at any given rate. We propose a new family of densities defined on R with a large spectrum of tail behaviours, called generalized exponential power of the second form (GEP2), and its exponential transformation defined on (0,), called log-GEP2, which proves to be helpful for robust modelling. Practical considerations are addressed through a case of combination of experts’ opinions, where non-robust and robust models are compared.


Download Citation

Alain Desgagné. "Full Robustness in Bayesian Modelling of a Scale Parameter." Bayesian Anal. 8 (1) 187 - 220, March 2013.


Published: March 2013
First available in Project Euclid: 4 March 2013

zbMATH: 1329.62124
MathSciNet: MR3036259
Digital Object Identifier: 10.1214/13-BA808

Rights: Copyright © 2013 International Society for Bayesian Analysis


Vol.8 • No. 1 • March 2013
Back to Top