Translator Disclaimer
March 2011 Reduced rank regression models with latent variables in Bayesian functional data analysis
Angelika van der Linde
Bayesian Anal. 6(1): 77-126 (March 2011). DOI: 10.1214/11-BA603

Abstract

In functional data analysis (FDA) it is of interest to generalize techniques of multivariate analysis like canonical correlation analysis or regression to functions which are often observed with noise. In the proposed Bayesian approach to FDA two tools are combined: (i) a special Demmler-Reinsch like basis of interpolation splines to represent functions parsimoniously and flexibly; (ii) latent variable models initially introduced for probabilistic principal components analysis or canonical correlation analysis of the corresponding coefficients. In this way partial curves and non-Gaussian measurement error schemes can be handled. Bayesian inference is based on a variational algorithm such that computations are straight forward and fast corresponding to an idea of FDA as a toolbox for explorative data analysis. The performance of the approach is illustrated with synthetic and real data sets.

Citation

Download Citation

Angelika van der Linde. "Reduced rank regression models with latent variables in Bayesian functional data analysis." Bayesian Anal. 6 (1) 77 - 126, March 2011. https://doi.org/10.1214/11-BA603

Information

Published: March 2011
First available in Project Euclid: 13 June 2012

zbMATH: 1330.62163
MathSciNet: MR2781809
Digital Object Identifier: 10.1214/11-BA603

Subjects:
Primary: 62F15
Secondary: 62G99, 62H20, 62H25, 62H30

Rights: Copyright © 2011 International Society for Bayesian Analysis

JOURNAL ARTICLE
50 PAGES


SHARE
Vol.6 • No. 1 • March 2011
Back to Top