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Reduced rank regression models with latent
variables in Bayesian functional data analysis

Angelika van der Linde∗

Abstract. In functional data analysis (FDA) it is of interest to generalize tech-
niques of multivariate analysis like canonical correlation analysis or regression to
functions which are often observed with noise. In the proposed Bayesian approach
to FDA two tools are combined: (i) a special Demmler-Reinsch like basis of in-
terpolation splines to represent functions parsimoniously and flexibly; (ii) latent
variable models initially introduced for probabilistic principal components anal-
ysis or canonical correlation analysis of the corresponding coefficients. In this
way partial curves and non-Gaussian measurement error schemes can be handled.
Bayesian inference is based on a variational algorithm such that computations are
straight forward and fast corresponding to an idea of FDA as a toolbox for explo-
rative data analysis. The performance of the approach is illustrated with synthetic
and real data sets.

Keywords: functional data analysis, functional canonical correlation analysis, func-
tional regression, functional prediction, functional discriminant analysis.

1 Introduction

Frequently it is of interest to analyze the impact of a functional covariate X on a
functional or non-functional response Y. An introduction to regression analysis with
functions and more generally to functional data analysis (FDA) is given in the mono-
graphs by Ramsay and Silverman (2002, 2005). The aim of the analysis typically is
either descriptive - to characterize the structure of dependence between X and Y -
or predictive - to set up a model for predicting Y given X = x. Special models are
discriminated according to the type of conditional distribution of Y. Important special
cases with functional Y are functional canonical correlation analysis (FCCA) respec-
tively functional regression. For a non-functional response Y generalized linear models
with functional predictors constitute a popular class of models. With binary response Y
functional discriminant analysis respectively functional logistic regression arise as spe-
cial cases. Also, the special case of scalar prediction (with Gaussian response Y ) has
attracted a lot of attention. Recent approaches to regression with functional predictors
are discussed in the special issues on FDA of several statistical journals (Davidian et
al., 2004: Statistica Sinica; Valderrama, 2007: Computational Statistics; Manteiga and
Vieu, 2007: CSDA). Nonparametric approaches are presented by Preda (2007) and in
the monograph by Ferraty and Vieu (2006).

A major part of Bayesian FDA has been developed in the spirit of nonparametric
Bayesian statistics (e.g. Petrone, Guindani and Gelfand, 2009) rather than Bayesian
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multivariate analysis. Much of the work is focused on clustering functions (Bigelow and
Dunson, 2006; MacLehose and Dunson, 2009; Ray and Mallick, 2006), also applied to
solve regression problems (Dunson et al., 2008; Rodriguez et al., 2009). Other Bayesian
work, utilizing the expansion of functions in a suitable basis (Thompson and Rosen,
2008; Baladandayuthapani et al., 2007), is closer to the approach presented here.

An intermediate step in most approaches to FDA is regularization, often by a rep-
resentation of X with respect to a (finite dimensional) basis of functions. It allows to
cast functional regression back into the framework of multivariate multiple regression
with basis coefficients representing the functions. In this paper interpolation splines
will be used as basic functions. Often, in order to simplify the structure of dependence
and to stabilize estimation and prediction, beyond the representation in a basis further
dimension reduction in the predictor space is desirable. It can be achieved by vari-
able selection or the identification of effective (linear) functional subspaces. Thus after
regularization standard dimension reduction techniques of multivariate analysis may
be applied and have indeed been tried in FDA: partial least squares (PLS), principal
components in regression (PCA) or reduced rank regression (RRR). These techniques
for dimension reduction can be related in hybrid approaches addressed as “continuum
regression” such that the transition from one approach to the other is driven by a sin-
gle parameter (Brooks and Stone, 1994; Merola and Abraham, 2001; Sundberg, 2002;
Bougeard et al., 2008). An early review paper providing insights on implicit parameter
constraints, also from a Bayesian point of view, is (Frank and Friedman, 1993).

The regression models mentioned so far are based on the conditional distribution
of Y given X = x. In many applications with functional X the data is noisy and/or
incomplete such that functions as realizations of X are not directly observable. Mea-
surement models for X may be set up, the curves individually filtered and then used in
regression (often neglecting the error due to filtering) if there is sufficient data. Thus the
underlying curves are regarded as latent curves, which can be determined individually
(Zhang et al., 2007; Cardot et al., 2007). In contrast, if the data is sparse, individual de-
noising may not be possible. Common latent variables can be introduced instead which
are estimated using all partial (noisy) curves (James and Hastie, 2001; James, 2002).
Such latent curves can simultaneously be related to the idea of dimension reduction like
principal components in regression and one is naturally led to reduced rank regression.
This paper gives special emphasis to problems arising in all models if the regressor X
is functional and only partially observed with noise in a subject-specific way.

RRR models with manifest variables have been studied extensively (Reinsel and
Velu, 1998; Yee and Hastie, 2003; Srivastava, 2007), also from a Bayesian point of view
(Schmidli, 1994; Geweke 1996), but RRR models with latent variables (which are not
assumed to be linear combinations or other explicitly modelled transformations of the
observed variables) less so. Within these models the regression of Y on X can be sub-
jected to the requirement of de-correlating X (PCA) and/or Y (“redundancy analysis”),
classically under Gaussian distributional assumptions. Related ideas were pursued by
Klami and Kaski (2008), and an extension to variables with distributions in exponential
families was suggested by Rish et al. (2008). Reduced rank models with latent variables
are promising starting points in Bayesian multivariate analysis as demonstrated by Tip-
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ping and Bishop (1999) introducing “probabilistic principal component analysis” and
by Bach and Jordan (2005) recovering canonical correlation analysis probabilistically.
A similar non-functional model called “supervised probabilistic PCA” was suggested
by Yu et al. (2006). Probabilistic principal component analysis was extended to func-
tions by van der Linde (2008), and also investigated under error schemes in exponential
families (van der Linde, 2009).

The purpose and contribution of this paper is to extend these ideas to try a Bayesian
FCCA in an analogous way and furthermore to explore the potential of the reduced
rank model in Bayesian functional regression more generally, allowing for partial and
noisy observations of functions. Approximate posterior inference will be based on a
variational algorithm extending that of Wang (2007). It is easy to implement, fast
and hence provides a pragmatic approach to quick explorative Bayesian analyses. It
is sufficient to reveal the potential respectively the potential weakness of a data set
and indicates if further investigation using more sophisticated sampling techniques is
worthwhile.

The RRR models studied in this paper are motivated by the need to cope with
partial (noisy) predictor curves and are suitable for prediction. However, they share the
principled weakness of latent variable models in (Bayesian) multivariate analysis, non-
identifiability, and hence interpretation is not immediate. Alternative(ly parameterized)
regression models may be preferable if the aim of the analysis is descriptive and data
is not sparse. Bayesian FDA is only being emerging and not yet rich in methods and
experience. In a more extensive technical report (van der Linde, 2010) pointers to
alternative models, brief reviews of the largely frequentist literature related to important
special cases of FDA and more worked examples of the RRR models proposed in this
paper are given.

In the next section 2 the model is formally introduced. Inference and model choice
are discussed in section 3. In section 4 special cases are addressed and examples of RRR
with latent variables are given. Section 5 concludes with a discussion of extensions and
open problems. Technical details of the variational algorithm are given in an appendix.

Thus a fully general model is specified first with the impact of a heavy notation and
possibly difficult reading. However, the emphasis is on the versatility of the RRR model,
and the examples mainly illustrate how special applications can be embedded while any
special application could still be substantially refined. A reader being interested in a
particular subclass of models like FCCA or discriminant analysis might prefer to start
with an example in section 4, then study the graphical (sub-)models in section 2.1 for an
overview and in order to identify his/her model and continue with the relevant sections
on details of model specification and inference.
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2 Model specification

2.1 Overview

Assume that for each of M subjects a pair of random vectors (Xm, Ym) is observed with
values xm in <NXm , ym in <NYm and that across subjects observations are (conditionally)
independent. Xm and Ym may represent partially observed curves fXm , f

Y
m such that the

numbers NX
m , N

Y
m of observed noisy function values as well as their locations (designs

dXm, d
Y
m) may vary with m. The vector of function values at a design will be denoted

using the design as subscript, e.g. fXmdXm . For simplicity a generic X will be called the
functional regressor or functional predictor, and a generic Y the response. A key idea in
model building is to represent all X-functions as interpolation splines w.r.t. a common
design dX , decomposing them into a mean function and individual residual functions
which are spanned in bases of splines interpolating values at dX . The corresponding
“outer model” is visualized in figure 1 where the usual convention of graphical models is
applied: stochastic and logical nodes are represented by ellipses, constants by rectangles,
edges by single arrows if they represent a distributional specification and by double
arrows if they represent a deterministic relation. A plate indicates repetitions.

for(m IN 1 : M)

thetaX_m

R_dXdeltaXQ_dX

fX_mdXfX_mdX_mX_m

Figure 1: Graphical model for interpolation splines observed with noise.

Here the leftmost arrow represents an observational error scheme where the distribution
of observations will be assumed to belong to an exponential family with unknown func-
tion values fXmdXm at the individual observational design dXm as canonical parameters.
The horizontal double arrow symbolizes the interpolation step; given function values
fXmdXat a common design dX the values fXmdXmat the individual design are obtained ap-
plying an interpolation matrix IPXm : fXmdXm = IPXm f

X
mdX . The interpolation spline at the

common design is in turn decomposed into a mean function, common to all X-curves,
and a specific residual function. The basis functions of the mean function correspond to
the columns of a matrix QdX , those of the residual function to the columns of a matrix
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RdX with coefficients δX and θXm respectively: fXmdX = QdX δ
X +RdXθ

X
m. The model is

defined analogously for functional Y . If Y is univariate, functions reduce to values and
interpolation is not needed.

The next step is to define reduced rank regression for the individual spline coefficients
θXm, θ

Y
m. In an “inner model”, graphically displayed in figure 2, the coefficients are related

by a common latent variable sm.

for(m IN 1 : M)

Sigma_thetaX Sigma_thetaY

thetaX_m thetaY_mmuthetaY_mmuthetaX_m

GYGX

s_m

Figure 2: Graphical model for the RRR of coefficients θZm.

More formally, for Z ∈ {X,Y } it is assumed that θZm ∼ N(µθZm ,ΣθZ ), µθZm = GZsm,

and conditionally θXm, θ
Y
m are independent. This is essentially the probabilistic model

introduced by Bach and Jordan (2005) for multivariate canonical correlation, where the
columns of GX , GY represent “patterns of covariation” and the values of sm can be read
as scores of transformed canonical variates, and both have to be estimated. The idea
of this paper is (1) to extend the model to canonical correlation analysis for functions
(possibly partially observed with noise) using the frame of the “outer model” and (2) to
generalize it to a reduced rank regression model with functional covariate but arbitrary
response by adapting the outer model for the response. In prediction problems the
numbers of observed units are unequal, MX = M +mX ≥ MY = M, say. In this case,
for m = 1, ...,mX , the latent variable sm is determined by Xm only and θYm has to be
inferred from sm.

The full hierarchical model comprising the outer models for X and Y , the inner
model for the coefficients θXm, θ

Y
m and all (hyper-)priors is displayed in figure 3 for a

Gaussian functional regressor X and a non-Gaussian scalar response Y .

The outward model in the lower part is parameterized by ϕY = (δY , θY1 , ..., θ
Y
MY ) and

ϕX = (δX , θX1 , ..., θ
X
MX , λX), where λX denotes the precision of the Gaussian observed

noise. The inner regression model in the upper part depends on ψZ = (GZ , λGZ ,ΛθZ )
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for(m IN 1 : M)

alpha0lamGX

beta0lamX

alpha0lamX

lamX Y_mX_m

fX_mdX_m

lam0deltaX lam0deltaY

deltaY

xi_m

deltaX

rX_Q

rX_R

Q_dX

R_dX

fX_mdX

C0Y

nu0Y

C0X

nu0X

LamthetaYLamthetaX

thetaY_mthetaX_m

muthetaY_mmuthetaX_m

beta0lamGX beta0lamGY

alpha0lamGY

lamGX lamGYGX GY

s_m

K

Figure 3: Full hierarchical model for a Gaussian functional X and a non-Gaussian
non-functional Y with MX = MY = M .
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as hyperparameters of θZm, where ΛθZ = Σ−1
θZ

and λGZ summarizes precisions of the
columns of GZ , and on the latent variables sm. For the functional variable X the known
matrices IPXm , QdX and RdX describe interpolation. The rectangles in the outmost
left and right column of the diagram represent mainly known hyperparameters, but
also three model parameters occur: K, the number of latent variables (sm ∈ <K) and
rXQ , r

X
R , the number of columns of the matrices QdX , RdX respectively, which act as

smoothing parameters. (In figure 3 the matrices QdX , RdX are shown as logical nodes
depending on the smoothing parameters while in figure 1 they are shown as constants,
implicitly assuming that the smoothing parameters rXQ , r

X
R are given.)

In the sequel the hierarchical model is specified in detail comprising (conjugate) stan-
dard distributions like Gaussian (N(µ, σ2)), Gamma - (Γ(α, β)), Wishart - (W (ν, C−1))
and Multinomial (Mult(J, π)) distributions. Related to Gaussian distributions vari-
ances are denoted by σ2, covariance matrices by Σ and precisions by λ respectively
Λ. The parametrization of the Gamma distribution is such that the mean is given by
α/β, and that of the Wishart-distribution such that the mean is given by νC−1. To
keep the notation interpretable the following rules are applied: parameters of distribu-
tions occurring more than once are indexed by the corresponding variable. Analogous
assumptions for X and Y are often formulated only once, indexed by Z, always mean-
ing Z ∈ {X,Y }. Fixed values of the parameters at the highest level of hierarchy are
marked with a superscript “0”, parameters in posterior distributions are marked with
an asterisk (as superscript).

2.2 Model for the functional predictor

Each xm represents a curve fXm recorded possibly with noise at a design dXm =
{tX1m, ..., tXNXmm}. As an error model a one-parameter exponential family with canonical
parameters ξXim equal to function values, ξXim = fXm (tXim), is assumed, that is for xm =
(x1m, ..., xNXmm)T

pX(xim|fXm (tXim)) = aX(xim) exp(ximfXm (tXim)− bX(fXm (tXim)), (1)

i = 1, ..., NX
m , and conditionally on fXmdXm

the variables Xim are independent.

The functions fXm , m = 1, ...,MX , are represented as interpolation splines with
respect to a common design dX withNX points tX1 , ..., t

X
NX , and hence are characterized

by the function values at the design dX , fXm = hI(fX
mdX

) ∈ HI(dX), say. The vector of

function values fXmdXm at the subject-specific design dXm is obtained from the vector of
function values at the common design by multiplication with an interpolation matrix:
fXmdXm

= IPXm f
X
mdX . The function fXm may be regarded as a logit-transformed probability

function of a Bernoulli process or a log-intensity function of a Poisson process or a mean
function of a Gaussian process to name the most popular cases.

Furthermore the interpolation splines fXm are decomposed into a mean function and
a residual function which again are interpolation splines. Hence fXmdX = cX + ρXm ,
say, induces fXm = hI(fX

mdX
) = hI(cX) + hI(ρXm), where hI(cX) denotes the mean function
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and hI(ρXm) denotes the residual function. Both functions are expanded in the first rXQ
respectively rXR functions of a Demmler-Reinsch like basis of interpolation splines such
that for the vector of function values at the common design dX

cX = QdX δ
X , ρXm = RdXθ

X
m (2)

holds. Here the rXQ columns of QdX are the vectors of function values of the basis
functions and similarly for RdX . For details of the construction of QdX and RdX see
(van der Linde, 2009). In the terminology of generalized linear models the decomposi-
tion fXmdXm

= IPXmQdX δ
X + IPXmRdXθ

X
m may be seen as defining a predictor using the

canonical link function.

If for example the noise model is Gaussian with homogeneous errors,

Xm|δX , θXm, σ2
X ∼ N(IPXm (QdX δ

X +RdXθ
X
m), σ2

XINXm ), (3)

and as in generalized linear models the Normal distribution is regarded as a belonging
to a one-parameter exponential family even if σ2

X is unknown.

If the functions fXm respectively vectors of function values fXmdXm are observed without
noise, the assumption (3) will still be made because the representation of fXm in the
truncated basis is an approximation. Thus for observations with Gaussian noise σ2

X

comprises an approximation error and a measurement error, for exact observations σ2
X

represents an approximation error only and can be expected to take smaller values.
The impact of an assumption of errors analogous to (3) even if observations are without
measurement error was studied by Klami and Kaski (2008) for CCA. They demonstrated
convergence with decreasing σ2

X in a simulation study.

2.3 Models for the response

For the response variables Ym three options are considered.

(i) The vectors ym, m = 1, . . . ,MY , represent functions fYm and assumptions analo-
gous to those about Xm are then made, changing only the superscript in notation. In
this case a functional response model is set up.

(ii) The variables Ym are univariate, distributed according to a one-parameter ex-
ponential family,

p(ym|ξYm) = aY (ym) exp(ymξYm − bY (ξYm)) (4)

where ξYm = δY + θYm. This can be seen as a special simple case of (i) with NY = NY
m =

1, rYQ = rYR = 1, QdY = RdY = 1. Again a special case would be

Ym ∼ N(δY + θYm, σ
2
Y ) (5)

even if σ2
Y is unknown. This set-up is relevant for scalar prediction and for the classifica-

tion of curves into two groups based on functional covariates using working observations.
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(iii) Classification in more than two groups can be described with Ym multinomially
distributed, Ym ∼ Mult(J, πYm), J > 2. Equation (4) can be generalized to a multi-
parameter exponential family with canonical parameter ξYm with ξYjm = log(πYjm/(1 −
J−1∑
k=1

πYkm)) for j = 1, ..., J − 1 = NY
m . In the sequel, also the alternative “softmax pa-

rameterization” in ηYm with πYjm = exp(ηYjm)/
∑J
i=1 exp(ηYim) and the decomposition

ηYm = δY + θYm, δ
Y , θYm ∈ <J will be used where NY

m = J .

Obviously other set-ups, particularly response vectors with partial vectors fitting
into (i)-(iii) would be similar, but are not considered here. Also, multivariate responses
distributed according to general multiparameter exponential families are beyond the
scope of this paper.

A final assumption is that conditional on the canonical parameters ξXm = fXmdXm
, ξYm

(and σ2
X , σ

2
Y if applicable) Xm and Ym are stochastically independent. Their marginal

dependence is captured in the relation of the (centered) canonical parameters specified
in an inner model.

In summary, the likelihood given data D is a function of the parameters ϕ = (ϕX , ϕY )
where ϕZ = (δZ ,ΘZ) or ϕZ = (δZ ,ΘZ , λZ) with ΘZ = (θZ1 , ..., θ

Z
MZ ), λZ = σ−2

Z , Z ∈
{X,Y }. The likelihood is given by

p(D|ϕ) =
MX∏
m=1

p(xm|ϕX)
MY∏
m=1

p(ym|ϕY ). (6)

The prior on ϕ is factorized as

p(ϕ) =
∏

Z∈{X,Y }

p(δZ)p(λZ)p(ΘX ,ΘY ) (7)

and completed assuming
δZ ∼ N(0, (λ0

δZ )−1IrZQ) (8)

and
λZ ∼ Γ(α0

λZ , β
0
λZ ). (9)

The prior of (ΘX ,ΘY ) is specified by an inner regression model.

2.4 The inner regression model

The inner regression model is a Gaussian reduced rank regression model with latent
variables for the coefficients of the centered canonical parameters ξZm−QdZ δZ = RdZθ

Z
m.

θXm|GX ,ΣθX , sm ∼ N(GXsm,ΣθX ), GX ∈ <r
X
R×K , ΣθX ∈ <r

X
R×r

X
R , (10)

θYm|GY ,ΣθY , sm ∼ N(GY sm,ΣθY ), GY ∈ <r
Y
R×K , ΣθY ∈ <r

Y
R×r

Y
R . (11)

Note that GX (GY ) and the latent variables S = (s1, ..., sMX ), sm ∈ <K are deter-
mined only up to an invertible linear transformation. The problems resulting from
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non-identifiability and the interpretation and use of this inner model which depends on
the response will be discussed in section 3 and for special examples in section 4. The key
assumption is that conditionally on the latent variable S the ΘX ,ΘY are independent,
more precisely that

p(ΘX ,ΘY |GX ,ΛθX , GY ,ΛθY , S) =
∏

Z∈{X,Y }

p(ΘZ |GZ ,ΛθZ , S), (12)

(where, remember, ΛθZ = Σ−1
θZ

). This part of the prior specification for the parameters
within the hierarchical model is detailed by

p(ΘZ |GZ ,ΛθZ , S) =
MZ∏
m=1

p(θZm|GZ ,ΛθZ , sm). (13)

In p(θZm|GZ ,ΛθZ , sm) two hyperparameters, GZ and ΛθZ , occur. The hyperprior for GZ

is specified by independent Gaussians for the columns γZk of GZ , k = 1, ...,K,

γZk |λγZk ∼ N(0, λ−1
γZk
IrZR), (14)

and
λγZk ∼ Γ(α0

λ
γZ
k

, β0
λ
γZ
k

). (15)

All precisions λγZk are collected in a vector λGZ = (λγZ1 , ..., λγZK ).

The hyperprior for an unrestricted precision matrix is a Wishart distribution

ΛθZ ∼W (ν0
Z , (C

0
Z)−1). (16)

If the precision matrix is assumed to be diagonal, ΛθZ = λθZ IrZR , the hyperprior is given
by

λθZ ∼ Γ(α0
λθZ

, β0
λθZ

). (17)

In summary, the parameters ϕ are augmented by hyperparameters ψ = (ψX , ψY ),
ψZ = (GZ , λGZ ,ΛθZ ), and the prior on all parameters factorizes with respect to Z
conditionally on S,

p(ϕ,ψ|S) =
∏

Z∈{X,Y }

p(ϕZ |ψZ , S)p(ψZ) (18)

where

p(ψZ) = p(ΛθZ )
K∏
k=1

p(γZk |λγZk )p(λγZk ). (19)

2.5 Distribution of the latent variables

The K ×MX− matrix S comprises the latent vectors for each of the MX observed
individuals which are assumed to be independent,

p(S) =
MX∏
m=1

p(sm).
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Furthermore, the key assumption in the latent variable model is that the components
of sm are independent,

p(sm) =
K∏
k=1

p(skm). (20)

The simplest distributional assumption about skm is skm ∼ N(0, 1), which amounts to

sm ∼ N(0, IK). (21)

To be more flexible particularly in functional prediction it is sometimes of interest to
overcome the framework of Gaussian distributions specifying the distribution of skm as
mixture of Gaussians. A similar approach in independent factor analysis (Choudrey
et al. 2000 ; Choudrey and Roberts, 2001) could be extended to the class of models
considered here, but is not studied in this paper.

2.6 Model parameters

Some parameters characterizing the model are still unspecified: the number of latent
variables K and the smoothing parameters for the mean functions rZQ and the residual
functions rZR. The choice of these parameters is discussed in section 3.3.

2.7 Special cases

In the sequel four types of analysis will be applied, corresponding to whether assumption
(16) or (17) holds for ΛθZ . They are abbreviated as in the following table:

ΛθX
(16) (17)

ΛθY
(16)
(17)

FCCA

INDY

INDX

INDXY

.

If Z, often the response Y, is univariate both (16) and (17) specify a Gamma distri-
bution. Yet the analyses FCCA and INDY usually do not coincide, because typically
the hyperparameters are chosen such that different Gamma distributions result. The
model INDXY has the “supervised probabilistic PCA” introduced by Yu et al. (2006)
as special case.

In order to illustrate the versatility and practical relevance of the proposed model
some important special cases which have been discussed in FDA are singled out.
1. Functional canonical correlation analysis (analyzed using FCCA, with MX ≥MY )
2. Functional prediction (response type (i), analyzed using FCCA or INDXY with
MX > MY )
3. Scalar prediction (response type (ii), analyzed using INDY or INDXY with MX >
MY )
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4. Functional discriminant analysis or classification (response type (iii), analyzed using
FCCA, INDY or INDXY with MX > MY ).

In the technical report (van der Linde, 2010) for each special case more comprehen-
sive reviews of the (mostly frequentist) literature are given pointing in more detail to
methodological issues and fields of application.

3 Inference

A variational Bayesian approach, also called an ensemble learning approach in the ma-
chine learning community, will be taken to derive an approximate posterior distribution
q for all quantities of interest Ξ. It has to be adapted to the proposed model and its
special cases which can be quite tedious, but main ingredients are known and have been
tried in multivariate (sub)models already. The main algorithms are combined with ideas
applying to special cases of FDA: in particular the proposal of Archambeau et al. (2006)
of how to obtain patterns of covariation in CCA based on latent variables is needed,
and it has to be spelled out explicitly how to obtain predictions of the response variable.
If observed variables are non-Gaussian, Gaussian approximations based on working ob-
servations as in generalized linear models (van der Linde, 2009) or based on pseudo
observations as introduced for classification by Bouchard (2007) can be used. They are
described in this section in order to prepare a comparison of the two approaches by
example in section 4. Also, the choice of the model parameters turns out to be crucial
and several options are discussed. Thus in this chapter contributions from different
special sources in the literature are evaluated and integrated to develop a strategy of
inference for FDA with latent variables.

The main idea of variational inference is to maximize a lower bound Lq of the
marginal log-density of the data D, log p(D) ≥ Lq with Lq induced by the approximate
posterior density q. By assumption q is factorized into parametric densities, here

q(Ξ) = q(S)
∏

Z∈{X,Y }

q(δZ)q(θZ1 , ..., θ
Z
MZ )q(λZ)q(ΛθZ )

K∏
k=1

q(γZk )q(λγZk ), (22)

and further factorizations over m in q(θZm) and q(sm) result from prior independence.
Using conjugate priors algorithms in closed form for iterative updates of the factors
increasing the lower bound Lq can be obtained. The main algorithms for functional re-
duced rank regression with MX ≥MY used in the examples are given in the appendices
1 and 2. The initialization of all parameters necessary to start the updates (which was
the same for all examples) is described in appendix 3. Also, default (hyper-) parame-
ters are specified there. Variational algorithms similar to those required for functional
reduced rank regression were developed by Wang (2007) (for multivariate CCA) and
by van der Linde (2008, 2009) (for functional PCA), and the reader is referred to these
papers for details not repeated here.
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Variational algorithms will be given for the case of Gaussian errors in observing the
functional predictor and the response variable. If instead (1) or (4) hold as non-Gaussian
error models p(D|Ξ) can be approximated using the “working Gaussian density” for
“working observations”. These are defined by

wZ(ξ0Z
im) = ξ0Z

im + [(bZ)′′(ξ0Z
im)]−1(zim − (bZ)′(ξ0Z

im))

i = 1, ..., NZ
m, m = 1, ...,MZ , where if Z is functional ξ0Z

im = f0Z
m (tZim) is a point of

expansion in a second order Taylor approximation of log p(zim|fZm(tZim)). In terms of
vectors ξ0Z

m = f0Z
mdZm

= IPZmf
0Z
mdZ , and the working distributional assumption is

wZm(f0Z
mdZ ) ∼ N(IPZmf

Z
mdZ , diag([(bZ)′′(f0Z

m (tZim))]−1). (23)

In this way an approximating working Gaussian distribution with known covariance
matrix can be used - given the point of expansion which may be updated iteratively.
Thus stepwise the variational algorithm is simplified in that the updates of λZ can be
omitted. Overall though, it is more expensive because the model parameters have to be
optimized not only once but alternatingly with each point of expansion. The approach
was investigated in detail for FPCA by van der Linde (2009) and is applied analogously.

In case of functional discriminant analysis where Y is binary or more generally multi-
nomial another Gaussian approximation to the likelihood can be used. Bouchard (2007)
suggested a lower bound inducing a pseudo Gaussian approximation which can be ex-
pected to give better results than the working observations because the latter yield an
approximate lower bound only. His algorithm is based on the “softmax parameteriza-
tion” in ηYjm = log(πYjm) (see section 2.3). His approach involves variational parameters
am ∈ < and ζm ∈ <J , m = 1, ...,MY which are optimized with each iteration to make
the lower bound as tight as possible.

Technically pseudo observations with a pseudo Gaussian distribution

vm ∼ N(IPYmf
Y
mdY ,Σvm) (24)

are defined by
vm = Σ−1

vm(ym − bm) ∈ <J (25)

where
Σvm = 2diag(g(ζjm)), (26)

g(u) =
1

2u
(

1
1 + e−u

− 1
2

), (27)

and
bjm = 0.5− 2amg(ζjm) (28)

for j = 1, ..., J. The update rules are summarized in appendix 4.

Variational inference provides an approximate posterior distribution only. The ex-
amples with simulated data demonstrate that the approach yields good point estimates
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and pointwise credible regions covering the true function values even if their width might
be underestimated. A more detailed assessment of the accuracy of the approximation,
especially of posterior covariances, requires a comparison with sampled posterior distri-
butions. A systematic comparison and in particular the investigation of MCMC based
model choice (as in the paper by Lopes and West (2004) for FA) is beyond the scope
of this paper. However, the model can be easily implemented in WinBUGS and the es-
timates obtained by variational inference used to initialize sampling. WinBUGS is not
well suited to multivariate problems (nodes) and as a multipurpose software possibly
not efficient for the RRR model. But it is an immediate option for practitioners, and
can be applied to obtain a first impression of possible improvements over variational in-
ference by MCMC. Some experiences with the implementation of (F)CCA in WinBUGS
are reported in section 4.

3.1 Functional canonical correlation analysis (FCCA)

CCA is a standard technique, described in any textbook on multivariate analysis (e.g.
Mardia et al., 1995), to analyze the (linear) dependence between two zero mean random
vectors θX ∈ <rXR , θY ∈ <rYR with covariance matrices ΓX , ΓY and cross-covariance
matrix ΓXY . (Here we consider the marginal distribution rather than the conditional
distribution (10),(11), that is, ΓXY = GX(GY )T and ΓZ = GZ(GZ)T + ΣθZ , Z ∈
{X,Y }.) A major aim of CCA can be the identification of “patterns of covariation”
represented by the (pairs of) columns of a matrix AZ , Z ∈ {X,Y }, which form basis
vectors in the reconstruction of θZ . A meteorological example of nicely interpretable
patterns of covariation is given by von Storch and Zwiers (1999, ch.14). Functional
patterns of covariation can easily be visualized and thus help interpretation. The main
ideas of dimension reduction and of extracting patterns of covariation based on a RRR
are briefly outlined below.

Technically CCA is a de-correlation achieved by a singular value decomposition of
(ΓX)−1/2ΓXY (ΓY )−1/2 = V XP (V Y )T where V X , V Y are orthonormal and P is diago-
nal with entries κk. The K− dimensional column vectors uZk of UZ = (ΓZ)−1/2V Z , Z ∈
{X,Y }, then form canonical weight vectors, and canonical variates are obtained as
SZ(k) = (uZk )T θZ , k = 1, ...,K. The K pairs of canonical variates can be ordered accord-
ing to the size of the canonical correlation coefficients κk = cov(SX(k), S

Y
(k)), k = 1, ...,K.

Dimension reduction is based on the projection of θZ onto the space spanned by canon-
ical variates SZ(k), k = 1, ...,K. Thus, with the notation SZ = (SZ(1), ..., S

Z
(K))

T ,

θZm ≈ AZsZm, where AZ = ΓZUZ . (29)

Each feasible GZ (satisfying ΓZ = GZ(GZ)T + ΣθZ and ΓXY = GX(GY )T ) and AZ are
related by an invertible transformation,

GZ = AZLZ (30)

with LX(LY )T = diag(κk). Defining BZ = IK + (GZ)TΛθZGZ and the columns of W
by the eigenvectors of (IK − B−1

X )(IK − B−1
Y ), Archambeau et al. (2006) demonstrate
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that
LZ = WT (IK −B−1

Z )1/2. (31)

Hence AZ can be reconstructed from all feasible matrices GZ in the RRR model. Note
that

GZsm = AZLZsm = AZsZm (32)

for sZm = LZsm with (prior) cov(sX , sY ) = diag(κk) and that in contrast to (29) with
two latent variables only one common latent variable is specified in (10),(11) respectively
(32). For further discussion and model variants see (Bach and Jordan, 2005).

In the latent variable approach to FCCA patterns of covariation can be inferred
if the joint covariance matrix Γ is known. Thus realizations from the (approximate)
posterior distributions of GZ and ΣθZ can be used to obtain by simulation a sample
of patterns of covariation and to investigate their variability. This is computationally
expensive because singular value decompositions are required for each realization. An
approximating shortcut is to use an estimate L̂Z of LZ and to refer to the approximate
Gaussian distribution of the columns of AZ , aZk = GZ(L̂Z)−1

k , neglecting the uncertainty
in the estimated k-th column (L̂Z)−1

k of (L̂Z)−1 In this respect the probabilistic approach
to (F)CCA is merely a special approach to inference about the covariance matrix, the
singular value decomposition of which is not incorporated in the parametrization. The
problem similarly occurs in FPCA where principal modes of variation in a set of curves
are identified only ex post. (Compare the discussion of rotations in (van der Linde,
2008) and further comments in section 5.)

3.2 Prediction

In this section the problem of predicting an unobserved f̃Ym (resp. θ̃Ym) from an ob-
served X̃m using the inner regression model with different specifications of ΣθX ,ΣθY is
investigated.

Assume that M pairs of curves have been observed and that another mX X− curves
(that is vectors x̃m with observations x̃nm, n = 1, ..., ÑX

m , m = 1, ...,mX) are given for
which for example the functions f̃Ym are to be predicted. Thus the numbers of observed
curves are unequal: MX = M + mX > MY = M. The key idea in predicting an
unknown Y− curve f̃Ym = hI(cY ) + hI(ρ̃Ym) from noisy X− values is to infer s̃m from
X̃m via θ̃Xm and to reconstruct ρ̃Ym = RdY θ̃

Y
m via θ̃Ym from s̃m. Rish et al. (2008) use

(maximum likelihood) point estimates of s̃m and parameter estimates in their predictive
model thus neglecting the estimation error. Attias (1999) discusses (non-functional)
prediction in latent variable models from a Bayesian point of view pointing to the use
of an augmented data set to derive a predictive distribution. This technique will be
applied here.

It is sufficient to find the predictive distribution of f̃YmdY = QdY δ
Y + RdY θ̃

Y
m. The

posterior distribution of all parameters in the model given x̃ = {x̃m|m = 1, ...,mX} and
the data D′ = {(xm, ym)|m = 1, ...,M} can easily be obtained running the variational
algorithm. In this way the posterior distribution of s̃m is determined by x̃m only and
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is used to infer moments of the posterior predictive distribution of θ̃Ym. Notice that only
θYm, m = 1, ...,M occur as parameters in the likelihood function. And although the
conditional distribution of θ̃Ym is Gaussian, θ̃Ym|GY , s̃m,ΣθY ∼ N(GY s̃m,ΣθY ) due to
the product in the mean the predictive distribution is not Gaussian. But using the
approximate factorized posterior distribution we have

E(θ̃Ym|x̃, D′) = E(GY |x̃, D′)E(s̃m|x̃, D′), (33)

cov(θ̃Ym|x̃, D′)
= E(ΣθY |x̃, D′) + cov(GY s̃m|x̃, D′)
= E(ΣθY |x̃, D′) + Es̃m|x̃m,D′(cov(GY s̃m|s̃m, x̃, D′)) (34)

+covs̃m|x̃m,D′(E(GY s̃m|s̃m, x̃, D′)) (35)

and
cov(f̃YmdY |x̃, D

′) = QdY (cov(δY |x̃, D′))QTdY +RdY (cov(θ̃Ym|x̃, D′))RTdY (36)

where posterior independence of δY and (GY s̃m) follows from the assumed factorization
(22).

Classification of the m-th subject given curve Xm into one of J groups is based on es-
timated respectively predicted probabilities π̂Yjm. They are obtained as π̂Y1m =logit−1(ξ̂Ym)
for J = 2, where ξ̂Ym = δ̂Y + θ̂Ym (and π̂Y2m = 1− π̂Y1m) if working observations are used.
For J ≥ 2, if Bouchard’s (2008) approach is employed, π̂Yjm = exp(η̂Yjm)/

∑J
i=1 exp(η̂Yim),

where η̂Ym = δ̂Y + θ̂Ym, and in the J−dimensional softmax parametrization the parame-
ters are dependent across j. All estimates/predictions are taken as posterior (predictive)
means. The m-th curve is assigned to the group with maximum π̂Yjm.

3.3 Model choice

There are five model parameters: K, rZQ, r
Z
R, Z ∈ {X,Y },with K ≤ min{rXR , rYR} in

FCCA. A standard approach to model choice in variational inference is the maximization
of the lower bound Lq, approximating the maximization of the marginal likelihood of the
data. It can be applied in all special cases except in classification if Bouchard’s approach
with adaptively optimized variational parameters is used. Model search based on the
lower bound is prior predictive. It might be objected that in functional prediction a prior
predictive criterion for model choice (like the marginal likelihood) is less appropriate
than a posterior predictive criterion (like DIC or a modification thereof). However, here
the model is block-bivariate in X and Y , and given X̃ one is half way between prior
and posterior prediction. Hence prior predictive model choice can still be justified.

Given K smoothing parameters were chosen maximizing the lower bound Lq by
searching over a range of candidate values. With each update the values of Lq can be
calculated and the final updates yield the values to be compared. Note that thus the ap-
proach is an empirical Bayesian approach, and the uncertainty about model parameters
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is not taken into account when assessing the precision of parameter estimates on a lower
level of model hierarchy. For fixed K the pairs of smoothing parameters (rXQ , r

Y
Q) respec-

tively (rXR , r
Y
R ) are optimized in alternating searches where the range of candidate values

depends on the data set. As in functional PCA (van der Linde, 2008) an exploratory
smoothing of discretized mean functions or of a subset of discretized curves (if available)
is applied to initialize the smoothing parameters, and new smoothing parameters are
searched in the neighborhood of old parameters.

Based on the examples of RRR tried no conclusive recommendation how to choose
the number of latent variables K can be given. In principle there are several options.

(i) Maximization of the lower bound

This approach did not work for FCCA and INDY. In all examples the lower bound
was almost decreasing with increasing K such that K = 1 was suggested throughout.
I suppose this is due to the use of the Wishart distribution. (With growing K, ΛθZ
becomes larger and in turn the entropy term of sm in the lower bound decreases. This
is not sufficiently compensated by the entropy term of Λθz .) If instead in a predictive
model Λθz = λθzIrZR was assumed and a Gamma distribution for λθz was used the choice
of K based on the lower bound did yield reasonable results in prediction. Thus the lower
bound as a criterion to determine K can be used for INDXY but not for FCCA and
INDY.

(ii) Automatic Relevance Determination (ARD)

For fixed large K columns of GZ with small (estimated) prior variance, that is values
close to zero, are discarded (cp. eq.(14), λγZk → ∞). For ARD Bayesian estimates of
λγZk are obtainable and (in all tried examples) did indicate a jump in size at a preferable
number of latent variables, but the cutpoint is to be chosen subjectively. ARD can be
used in all models studied here.

(iii) Canonical correlation coefficients in FCCA

Another option in FCCA is to choose K as the number of estimated canonical correla-
tion coefficients κk greater than 0.5. These estimates are obtained as a by-product of
the transformation introduced by Archambeau et al. (2006), GZ = AZLZ , to extract
patterns of covariation where LX(LY )T = diag(κk).

(iv) Fit and prediction

In scalar prediction the mean square error of fit in the test set with MY observations can
be evaluated, for the classification of functions the minimum misclassification rate in the
test set provides a measure of performance. These criteria did work in the examples, but
are ad hoc from a theoretical point of view. They are based on measures of fit without
taking into account model complexity which protects against overfitting. This deficiency
could be overcome by cross-validation which is, however, computationally demanding.
In the examples only prediction errors for known (simulated) function values in the
validation set with mX observations are evaluated.

Model search approached in this way is not yet satisfying. In summary, the expe-
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rience to be reported is, that in many regression contexts the lower bound could not
be used to determine K and alternatives were needed. For several examples extensive
tables are given to compare the performance of the different applicable criteria for the
choice of K. The corroboration of the alternative strategies has to be left to further
research, though.

4 Examples

The inner regression model (10),(11) specifies a structure of dependence with (10) mod-
elling “errors in variables” θX . FCCA with ΣθX , ΣθY unrestricted, used to infer patterns
of covariation will be discussed in section 4.1. The set-up of the first example with sim-
ulated data will also be used subsequently to illustrate other types of analysis. The
functional response model used for prediction of fYm given Xm will be considered in sec-
tion 4.2 and illustrated with Gaussian and non-Gaussian synthetic observations. The
special case of scalar prediction will be the topic of section 4.3. Classification based
on a functional predictor will be considered in section 4.4 and applied to a problem of
speech recognition with a real data set.

4.1 Functional canonical correlation analysis (FCCA)

Two examples of FCCA are presented. In the first example data are generated accord-
ing to a specified regression between θX and θY , that is, the conditional rather than
the marginal distribution of θZ is used in simulations. Thus the data generating pro-
cess is close to the RRR model. The example illustrates the extraction of patterns of
covariation with a varying amount of information in the sample and also the failure of
the maximization of the lower bound as criterion for the choice of the number of latent
variables K in FCCA. Alternative choices of K based on the canonical correlation co-
efficients and on ARD are discussed. In the second example again a synthetic data set
is analyzed: a Poisson error scheme and partial designs are features that are difficult
to handle in competing (frequentist) approaches but can easily be incorporated in the
RRR model.

Example 1

The example is constructed with a strong linear relationship between θX and θY . A
synthetic data set is obtained as follows: K = 2 is set and values sm ∼ N(0, I2) are
generated for m = 1, ...,M = 100. GX with rXR = 5 is chosen as

(GX)T =
[

0.3 0.1 2 −1.2 −1.1
0.1 0.1 2 −1.1 1.5

]

and yields θXm = GXsm + eXm, where eXm ∼ N(0,ΣθX ) with

ΣθX = diag(0.1, 0.12, 0.14, 0.16, 0.18). Then θYm is generated according to θYm = WθXm +
eYm, e

Y
m ∼ N(0, F ), F tri-diagonal with 0.25 as diagonal entries and 0.09 as entries in
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the first sub- and super-diagonal. W is set to be

W =



1 1.5 2 1.5 1
−0.5 1 −1 1 −0.1
0.7 0.8 0.3 0.4 0.6
1 1 1 1 1
−2 −1 2 1 0
0.4 0.3 0.1 0.1 0.1
0.4 −0.3 −0.1 −0.1 0.1


and thus implies rYR = 7. RdX is defined with NX = 35, RdY with NY = 40 equidistant
points in (0,1). (Discretized) mean functions are obtained from rXQ = 3, δX = 0.4∗J3×1

and rYQ = 5, δY = −0.5 ∗ J5×1. Gaussian random noise with σX = 0.05 resp. σY = 0.06
is added to fZmdZ = QdZ δ

Z +RdZθ
Z
m. The resulting data set will be referred to as data

1-1. The last twenty pairs of curves along with the mean functions are displayed in
figure 4.

Then the data are thinned leaving out randomly 3 subsequent observations in each
X− vector (such that NX

m = 32) and 5 randomly chosen single points in each Y−
vector (such that NY

m = 35). Thus the partial designs dXm and dYm vary over m =
1, ..., 100. Three modifications of this basic data set with partial designs are analyzed.
The intention is to try a reduction of sample size as the inner relation in the regression
model is strong and to vary the precisions in the model.

1-1/96: The first 96 pairs of curves are retained.

(In section 4.2 below the last 4 will be used to illustrate prediction.)

1-1/16: Only the last 20 pairs of curves are considered, subjecting 16 to

FCCA (and keeping the last 4 for prediction).

1-2/96: The precision is increased multiplying ΣθX and F by 0.1. Thus the represen-
tation of X− and Y− curves by the coefficients θX and θY is improved, and the linear
relation between θX and θY is strengthened.

The canonical correlation coefficients obtained with K = 5 are listed in table 1. The
true multivariate CCA refers to the SVD of cov(θX , θY ) = ΣθXWT , the sample multi-
variate CCA to generated vectors θZ . FCCA is based on the true smoothing parameters
(rXQ = 3, rYQ = 5, rXR = 5, rYR = 7), which are actually found in model search for each K.
Maximizing the lower bound w.r.t. K given the optimal smoothing parameters yielded
K = 1 for each of the three data sets.

While true and multivariately estimated canonical correlation coefficients suggest K =
4, FCCA focuses on K = 3 if 96 pairs of observations are available and on K = 2 if only
16 pairs are in the data set. In table 1 also estimates of the hyperparameters λγZk are
given, indicating the (prior) size of the coefficients in GZ . Interpreting these values in
the spirit of automatic relevance determination (“large” values of λγZk , that is “small”
variances of entries of γZk , centered at zero, point to irrelevant columns of GZ) underpins
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Figure 4: Ex.1: Data 1-1. First row: 20 pairs of noisy curves. Second row: true
mean function (solid line) and empirical mean function (dashed line) based on all 100
generated noisy curves. Third to fifth row: first three patterns of covariation; true mul-
tivariate (solid line), 1-1/96 (dashed-dotted line), 1-2/96 (dashed line), 1-1/16 (dotted
line).
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Table 1: Ex.1. True and estimated coefficients of canonical correlation and estimates
(posterior means) of λγZk .

1-1 κ1 κ2 κ3 κ4 κ5

true 0.9986 0.9766 0.8836 0.6103 0.2424
1/96 multiv. 0.9987 0.9772 0.8979 0.6524 0.2268
1/96 FCCA 0.9976 0.9897 0.8123 0.4421 0.0368
1/16 multiv. 0.9998 0.9922 0.8968 0.7452 0.3211
1/16 FCCA 0.9954 0.9909 0.0651 0.0001 0.0000

ARD λγ1 λγ2 λγ3 λγ4 λγ5
1/96 X 0.47 0.96 2.31 7.31 7.28

Y 0.10 0.58 0.72 2.65 4.99
1/16 X 1.14 0.94 131.21 328.30 364.02

Y 0.14 0.44 107.34 252.01 288.11
1-2 κ1 κ2 κ3 κ4 κ5

true 0.9999 0.9964 0.8866 0.6691 0.2446
2/96 multiv. 0.9999 0.9976 0.9006 0.7034 0.2282
2/96 FCCA 0.9992 0.9968 0.9349 0.0081 0.0003

ARD λγ1 λγ2 λγ3 λγ4 λγ5
2/96 X 0.40 0.72 2.53 5.28 7.13

Y 0.11 0.60 0.77 3.08 4.79
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the choice of K = 3 (with a cutpoint of 1.0 for all three data sets). Although this version
of ARD gives the right feeling, the choice of the cutpoint at 1.0 is merely intuitive. The
first three patterns of covariation are displayed in figure 4. While in all analyses the first
pattern was unambiguously identified, the second and third were sometimes swapped.
There is however considerable agreement in the identification of the three dimensional
subspaces representing the main joint features of the residual curves.

The model for FCCA was implemented in WinBUGS and run for data 1-2/96
with K = 3 and the true smoothing parameters. The model was identified setting
sM−K+k = ek for k = 1, ...,K, with ek denoting the k-th unit vector of dimension K.
The posterior means obtained by variational inference were used to initialize the sam-
pler. For comparison, also the initial values of variational inference (in appendix A3.2)
were tried. Convergence was reached first for the outer model (filtering of functions),
then gradually for the precision parameters (ΛθZ , λγk) of the inner model and eventu-
ally - if at all - for elements of the matrix GZ and the values of the latent variables
sm. Mixing for at least some entries of GZ is poor, and convergence of the values of the
latent variables can be doubted even for long chains. In figure 5 estimated functions
based on 20000 updates after a burn-in of 10000 samples are displayed. (10000 updates
too about 2.5 hours.) Although convergence diagnostics like the MC error or the trace
plots are not yet fully convincing, the estimates hardly change if the chain is continued.

While all methods of inference perform equally well in de-noising the functions, the
estimation of the mean function by variational inference is slightly improved and the
extraction of the first two patterns of covariation is considerably improved by further
sampling: The performance of MCMC with initial values as in A3.2 is not yet as satis-
fying.

In order to examine more closely the inner regression model, variational inference
is compared to MCMC in WinBUGS for CCA with simulated coefficients θZm used as
data. In the multivariate model fewer parameters result in reduced computing times:
10000 updates took about 25 minutes. The sampler was run with a burn-in of 120000
samples and another 40000 samples. In figure 6 the resulting patterns of covariance are
displayed.

For this example sampling on top of variational inference did not improve the multi-
variate estimates of the patterns of covariation. Although many more samples were
generated than in FCCA convergence diagnostics did not look better and convergence
of the values of the latent variables continued to look crucial up to eventually 400000
updates. The estimates remained stable, though.

Example 2

The example illustrates the performance of the proposed approach with simulated
non-Gaussian data. The vectors of function values fZmdZ are regarded as log-intensities
according to which Poisson data were generated.

The mean functions are determined by rXQ = 3, δX = (−9.21, 8.28, 3.22)T and
rYQ = 4, δY = (−7.11, 12.08, 0,−4.94)T . The coefficients θZm with rXR = rYR = 4 were
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Figure 5: Ex.1. Data set 1-2/96. First row: true curves fZ23 (solid lines) and estimates
obtained by variational inference in FCCA (dashed lines), MCMC initialized by varia-
tional inference in FCCA (dashed-dotted lines), MCMC initialized as in A3.2 (dotted
lines). Second row: true and estimated mean functions with line types as in the first row.
Third row: first three patterns of covariation; true multivariate (solid line), estimates
with line types as in the first row.
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Figure 6: Ex.1. Data set 1-2/96, non-functional analysis: first three patterns of co-
variation. True patterns (solid lines) and estimates obtained by variational inference
in FCCA (dashed lines), MCMC initialized by variational inference in FCCA (dashed-
dotted lines).
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simulated from a zero mean Gaussian distribution with joint covariance matrix Γ such
that Γ(k, k) = 1.5 for k = 1, ..., 8, Γ(k, k + 1) = 1 for k = 1, ..., 7, Γ(k, k + 2) = 0.7 for
k = 1, ..., 6. Thus, by symmetry, Γ has two sub- and super-diagonals, and the remaining
entries take the value 0.5. 50 of the resulting M = 100 log-intensity functions are
displayed in (the first row of) figure 7. The first two canonical correlation coefficients
are 0.75 and 0.265, and hence there is one major pattern of covariation. A complete
data set (“poi”) with 50 observations of each curve and two partial designs were tried:
“poipar1” with 10 (X) resp. 15 (Y ) randomly selected points omitted and “poipar2”
with 10 (X) resp. 15 (Y ) connected points left out for each curve.

The (Gaussian) variational algorithm was applied to working observations depending
on points of expansion ξ0Z

im , i = 1, ..., Nm = 50, m = 1, ..., 100 in a second order Taylor
approximation of the log-likelihood which also yields an approximate lower bound to
be used for choosing the smoothing parameters. The points of expansion were obtained
from randomly disturbed initial mean functions providing also the initial rZQ(0). Spline
smoothing was used to fit the mean functions. Given a Taylor expansion a search for
optimal smoothing parameters was carried out fixing (a maximum) K = 4, and based
on this choice new points of expansion were determined. This was repeated until the
model parameters did not change any more, and the number of expansions (“runs”) is
indicated along with the final results. For more technical details and discussion see (van
der Linde, 2009). Alternating Taylor expansions and model choice the computational
burden of model choice increases. However, the variational algorithm converges fast,
and to illustrate its power, model choice for this example is based on only 5 iterations
per analysis.

Table 2: Ex.2. Initial values for model search rZQ(0), estimated first canonical correlation
coefficient and relative error in recovering the first pattern of covariation.

data runs rXQ (0) rYQ(0) can.corr. relerrX relerrY

poi 3 7 6 0.7813 0.0259 0.0781
poipar1 3 7 7 0.7737 0.0258 0.0595
poipar2 1 11 11 0.7327 0.0831 0.1010

The results of the three final analyses are summarized in table 2 and figure 7. All
analyses suggested one pattern of covariation (κ1 > 0.5) and the same smoothing pa-
rameters rXQ = 4, rYQ = 3 (true values swapped) and rXR = rYR = 4 (correctly identified).
Also, the canonical correlation coefficient of 0.75 is fairly well estimated by values be-
tween 0.73 and 0.78. For all sampling schemes the estimated mean functions deviate
from the true one in the same way, obviously due to the simulated data (2. row of figure
7). The analysis with single observations left out (poipar1) hardly differs from the one
with complete data (poi), but omitting segments of functions (poipar2) deteriorates the
reconstruction of the pattern of covariation.



102 RRR models in FDA

0 10 20 30 40 50
0

1

2

3

4
X−logints

0 10 20 30 40 50
−2

0

2

4
Y−logints

0 10 20 30 40 50
0

1

2

3

4
X−means

0 10 20 30 40 50
0

1

2

3
Y−means

0 10 20 30 40 50
−0.6

−0.4

−0.2

0

0.2
1. X−pattern of cov

0 10 20 30 40 50
−0.6

−0.4

−0.2

0

0.2
1. Y−pattern of cov

Figure 7: Ex.2. Log-intensity functions (1.row), mean functions (2.row) and first pattern
of covariation (3.row), obtained under different sampling schemes: true (solid line), poi
(dashed line), poipar1 (dashed-dotted line), poipar2 (dotted line).
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Additionally, posterior sampling in WinBUGS again for K = 1, rXQ = 4, rYQ = 3
and rXR = rYR = 4 with initial values from variational inference was carried out. For
this example the difference can be expected to be more pronounced, because in order to
facilitate variational inference the Poisson-likelihood is approximated by second order
Taylor expansions with working observations. Indeed, figure 8 shows that in FCCA
more accurate estimates of log-intensity functions are obtained with MCMC (based on
20000 updates after a burn-in of 40000, taking about 11 hours). In contrast, for the
multivariate inner model with simulated coefficients θZm as data hardly any improvement
in the extraction of patterns of covariation could be achieved (with 50000 samples after
a burn-in of 50000 taking about 15 minutes).
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Figure 8: Ex.2. Data set ‘poi’. Log-intensity functions fZ23 (1.row), mean functions
(2.row) and first pattern of covariation in FCCA (3.row) and CCA (4.row). True func-
tions are represented by solid lines, estimates by variational inference by dashed lines,
MCMC estimates by dotted lines.

4.2 Functional prediction

Next consider the problem of predicting Y− curves from X− curves, that is of predicting
fYm from Xm based on FCCA or an inner regression model with ΣθZ = σ2

θZ IrZR (INDXY).
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The two examples previously used to illustrate FCCA are continued in this section.

Example 1 (continued)

For illustration consider again example 1 with three different data sets. There are
four Y− curves common to all data sets to be predicted from observed corresponding
X− curves. Thus the data sets 1-1/96 and 1-2/96 are augmented to comprise 100
X− curves and 96 Y− curves each. The comparison of these two data sets is to show
that the higher precisions in the second one are indeed reflected in higher accuracy of
predictions. The comparison of the augmented data sets 1-1/96 and 1-1/16 (with 20
X− curves and 16 Y− curves) is to illustrate how loss of information due to a smaller
number of curves results in increased uncertainty about the predicted curves.

In order to corroborate the choice of K based on the lower bound in INDXY in table
3 precisions of the columns of GZ are listed (with high precisions pointing to unnecessary
latent variables according to ARD). Furthermore, the given values of average absolute
errors in reconstructing the true function values fZmdZ by the posterior mean QdZµ∗δZ +
RdZE(GZ |x̃, D′)E(sm|x̃, D′) allow for an assessment of how well the lower bound reflects
the fit with latent variables. All given values result from variational inference after 10
iterations for the augmented data sets with true smoothing parameters.

For dataset 1-1/96 ARD suggests at least 3 latent variables, maybe 4. The lower
bound also points to K = 4, and the fit of functions is best for K = 5. The prediction
error is minimized for K = 5 (0.174), but only slightly smaller than for K = 4 (0.176).
Hence for this data set K = 4 is a well justified choice.

For data set 1-2/96 at least K = 3 and at most K = 4 are chosen according to ARD.
Maximization of the lower bound yields K = 3. The fit of X−curves is best for K = 4,
that of Y−curves is best for K = 5. The prediction error points to K = 5. Thus the
lower bound results in the smallest K but the average absolute prediction error differs
by only 0.0043 (with function values ranging about -2.5 and 5).

For data set 1-1/16 a cautious interpretation of ARD suggests K = 3, the lower
bound indicates the smaller K = 2. X− functions are best fitted using K = 2, Y−
functions using K = 3. The prediction error is minimized for K = 5, but again only
slightly smaller than for K ∈ {2, 3}. Here K = 3 maybe a compromising choice.

In all three data sets the lower bound suggests fewer latent variables than ARD but
the resulting differences in the prediction errors are not pronounced.

Next, predictions based on FCCA and INDXY are compared. The subsequent analy-
ses of the augmented data sets result from the following findings: model search based on
the lower bound yielded the true smoothing parameters rXQ = 3, rXR = 5, rYQ = 5, rYR = 7
for all data sets. For data set 1-1/96 K = 3 was suggested by canonical correlation co-
efficients for FCCA, K = 4 by the lower bound for INDXY. For data set 1-2/96 K = 3
was indicated in both FCCA and (by the lower bound) INDXY. With fewer curves (1-
1/16) only two latent variables were identified by FCCA as well as INDXY, again along
with the correct smoothing parameters except that rYQ = 3 (rather than rYQ = 5) was
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Table 3: Ex.1. Functional prediction with INDXY for data sets 1-1/96, 1-2/96 and
1-1/16. Posterior means of λγZk , values lb(K) of the lower bound (in units of 103),
average absolute errors (fit fZmdZ ) and average absolute prediction errors (prederr) in
reconstructing fZmdZ with latent variables.

1-1/96
λγZ1 λγZ2 λγZ3 λγZ4 λγZ5

X 1.33 1.21 2.85 36.80 53.28
Y 0.31 1.57 0.82 2.55 8.50

K=1 K=2 K=3 K=4 K=5
lb(K) 6.26 6.66 6.75 6.80 6.76

fit fXmdX 0.27 0.09 0.07 0.0478 0.0475
fit fYmdY 0.30 0.24 0.18 0.1268 0.1259
prederr 0.38 0.26 0.20 0.176 0.174

1-2/96
λγZ1 λγZ2 λγZ3 λγZ4 λγZ5

X 1.52 1.12 2.55 12.81 17.68
Y 0.34 1.83 0.91 3.41 20.44

K=1 K=2 K=3 K=4 K=5
lb(K) 6.48 7.68 7.72 7.67 7.64

fit fXmdX 0.25 0.029 0.023 0.021 0.020
fit fYmdY 0.21 0.074 0.058 0.044 0.045
prederr 0.45 0.084 0.074 0.072 0.067

1-1/16
λγZ1 λγZ2 λγZ3 λγZ4 λγZ5

X 1.45 21.08 3.25 135.06 135.17
Y 0.36 3.72 69.83 144.94 122.49

K=1 K=2 K=3 K=4 K=5
lb(K) 1,062 1,074 1,049 1,030 1,016

fit fXmdX 0.19 0.087 0.081 0.086 0.088
fitfYmdY 0.22 0.21 0.156 0.18 0.162
prederr 0.37 0.339 0.340 0.41 0.32
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suggested in INDXY. The corresponding predictions of one curve are shown in figure 9.
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Figure 9: Ex.1. Curve 98 predicted based on different modelling assumptions. FCCA:
1.column, INDXY: 2.column. Three data sets: 1/16: 1.row, 1/96: 2.row, 2/96: 3.row.
Each panel displays the true curve (solid line), the posterior predictive mean function
(dashed line) and a pointwise prediction error of +/- 3 times the posterior standard
deviation (dashed-dotted lines).

Note that with only 16 complete pairs of curves the true curve 98 is not covered by
the prediction interval obtained with model INDXY. In order to further compare the

performance of the two approaches relative errors (||f̃ZmdZ −
̂̃
fZ
mdZ
||2
<NZ

/||f̃ZmdZ ||
2
<NZ

)
for the vectors of de-noised function values are given for all four pairs of curves (m ∈
{1, 2, 3, 4}) in table 4.

Table 3 shows that f̃Y1 is particularly hard to predict and only caught with the aug-
mented data set 1-2/96. Applied to this highly informative data set the two approaches
hardly differ. A general conclusion which model should be preferred does not seem to be
justified. FCCA is a less restrictive model but the choice of K hinges on the estimation
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Table 4: Ex.1. Relative errors in prediction

1- 1/96 1- 2/96 1- 1/16
FCCA INDXY FCCA INDXY FCCA INDXY

f̃X1 0.10 0.009 0.003 0.001 0.81 0.02
f̃X2 0.05 0.02 0.004 0.005 0.28 0.12
f̃X3 0.07 0.007 0.002 0.002 0.25 0.08
f̃X4 0.18 0.04 0.004 0.005 0.49 0.03
f̃Y1 0.42 0.44 0.027 0.039 1.06 2.26
f̃Y2 0.05 0.02 0.008 0.005 0.18 0.18
f̃Y3 0.04 0.03 0.009 0.007 0.08 0.25
f̃Y4 0.05 0.03 0.008 0.005 0.09 0.19

of canonical correlation coefficients which is not very robust. INDXY allows for the
choice of K based on the lower bound and performs as well as FCCA if the data set is
sufficiently informative.

Example 2 (continued)

In example 2 Poisson data generated from given log-intensity functions were consid-
ered. To illustrate prediction three out of the last four pairs of curves are chosen (curves
97, 98, 99 from in total 100 curves, some displayed in figure 7), such that MX = 100
X− curves and MY = 96 Y− curves are used to estimate the model parameters. Pre-
dictions are obtained according to INDXY and based on partial designs (poipar1) with
NX
m = 40 and NY

m = 35. The model parameters obtained in FCCA with 100 pairs of
curves after 3 runs, K = 1, rXQ = 4, rXR = 4, rYQ = 3, rYR = 4 were used, and again three
runs applied. Resulting curves are displayed in figure 10.

The predicting X− log-intensity curves were reasonably well identified with individ-
ual estimates differing from the mean function (figure 10, first row). The errors that
did occur are however considerably enlarged by the exponential transformation (figure
10, second row) yielding the intensity-functions. Pointwise the errors in estimating the
mean QdY δ

Y are very small such that the prediction error is determined by the un-
certainty about the residual log-intensity functions. The inner regression model did
not extract a sufficiently strong relation between θXm and θYm to discriminate the Y−
log-intensities to be predicted (figure 10, 3.row), and the Y− log-intensity functions
are essentially estimated by the mean function (figure 10, 4.row). This of course also
holds on a larger scale for the predicted Y−intensity functions (figure 10, 5.row). The
prediction intervals do inform about the remaining uncertainty. In summary, the data
set with NX

m = 40 and NY
m = 35 is not informative enough to allow for precise predic-

tion of individual curves. The chosen sample sizes are not uncommon in biometrical
applications and thus the example cautions against too much optimism with respect to
prediction even if a major part of the covariance structure is discovered.
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Figure 10: Ex.2: Columns illustrate fits of fXmdX and predictions of fYmdY from Xm

for curve 97 (1.column), curve 98 (2.column) and curve 99 (3.column). 1.row: true
log-intensity (solid line) fXmdX , mean X - log-intensity QdXµ

∗
δX (dashed-dotted line),

estimate ̂̂fXmdX = QdXµ
∗
δX + RdXµ

∗
θXm

(dotted line), estimate f̂XmdX = QdXµ
∗
δX +

RdXE(GX |x̃, D′)E(s̃m|x̃, D′) (dashed line). 2.row: The same functions as in the first
row, but exponentially transformed. 3.row: True residual curve RdY θYm (solid line), pos-
terior predictive mean RdY E(GY |x̃, D′)E(s̃m|x̃, D′) (dashed line) and a pointwise pre-
diction error of +/- 3 times the posterior standard deviation (dotted lines). 4.row: true
log-intensity fYmdY (solid line), mean Y -log-intensity QdY µ∗δY (dashed-dotted line), pos-
terior predictive mean function f̂YmdY = QdY µ

∗
δY +RdY E(GY |x̃, D′)E(s̃m|x̃, D′) (dashed

line) and pointwise prediction error of +/- 3 times the posterior standard deviation
(dotted line). 5.row: The first three functions as in the fourth row exponentially trans-
formed.
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4.3 Scalar prediction

The special case of a univariate continuous response Y and a functional predictor X is
considered. Example 1 is continued applying the models INDY and INDXY.

Example 1 (continued).

Again the augmented data set 1-2 is considered with 100 X− and 96 Y− curves
which are strongly related. Two scalar targets are defined as

T1m = fYm(t0), t0 = 0.677

and

T2m = 2 + αTRdXθ
X
m,

αT = (α(t1), ..., α(tNX )), α(tn) = 5 cos(2πt2).

T1 is a function value by which the Y− curves can be distinguished although it is not
the value with maximum spread (cp. figure 4). T2 mimics a functional regression with a
functional regression coefficient α. Corresponding Y1− values are given by Ym(t0) (with
σY = 0.06). Y2− values are generated adding Gaussian noise with σY = 0.01. Predic-
tions of the last four T− values are obtained using the (true) smoothing parameters
for X− curves (rXQ = 3, rXR = 5) detected in the previous analyses with both INDXY
and FCCA. As in FCCA the lower bound in INDY turned out to be decreasing in the
number K of latent variables, and hence cannot be used to determine K. INDY differs
from FCCA only by the hyperparameters of the Gamma prior on λθY , and in scalar
prediction with FCCA K = 1 is the only choice. Hence it may be tried in INDY as well.
In fact, with K > 2 the prediction error varies only slightly. In INDXY K = 2 was
chosen based on the lower bound for both targets. As shown in figure 11 both targets
are predicted well by INDY and INDXY.

In table 5 the choice of K in INDXY by maximization of the lower bound and
alternatively ARD are compared, and additionally measures of fit for the underlying
functions and prediction errors are given. The values were obtained with the true
smoothing parameters rXQ = 3, rXR = 5 after 10 iterations of the variational algorithm.

For T1 ARD is not conclusive: using a cutpoint of 3 two latent variables would suffice
to represent the target, but K > 2 variables are needed to represent the X−curves.
The choice of K = 2 by the lower bound goes along with the best reconstruction of the
X−curves by the latent variables, but the fit of Y−values as well as the prediction can
be improved with K > 2.

For T2 it is again not clear which cutpoint to use in ARD. A cautious decision would be
K = 4. With the lower bound K = 2 is (slightly) preferred to higher values, and again
corresponds to the best reconstruction of X−curves. The reconstruction of Y−values
can be (slightly) improved with K > 2, and also the prediction error is smaller for
K > 2.
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Figure 11: Ex.1: Prediction of two scalar targets. 1.row: function values T1m, 2.row:
sums T2m. Crosses mark the values to be predicted, stars the estimates. The vertical
solid lines describe the prediction intervals based on 3 standard deviations. The triangles
represent the estimated mean value.
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Table 5: Ex.1. Scalar prediction with INDXY for data sets 1-1/96, 1-2/96 and 1-1/16.
Posterior means of λγZk , values lb(K) of the lower bound (in units of 103), average abso-
lute errors (fit fZmdZ ) and average absolute prediction errors (prederr) in reconstructing
fZmdZ with latent variables.

T1

λγ1 λγ2 λγ3 λγ4 λγ5
X 3.03 2.52 2.93 1.56 4.31
Y 2.60 9.16 3.73 2.68 3.71

K=1 K=2 K=3 K=4 K=5
lb(K) 3.23 3.81 3.78 3.75 3.71

fit fXmdX 0.25 0.0262 0.0266 0.265 0.0274
fit fYmdY 0.18 0.0621 0.0611 0.0607 0.0605
prederr 0.54 0.062 0.059 0.055 0.056

T2

λγ1 λγ2 λγ3 λγ4 λγ5
X 10.58 1.94 2.03 2.13 3.30
Y 89.18 155.27 19.18 67.56 34.99

K=1 K=2 K=3 K=4 K=5
lb(K) 3.32 3.828 3.827 3.79 3.75

fit fXmdX 0.25 0.0264 0.0265 0.0262 0.0279
fit fYmdY 0.11 0.019 0.0178 0.0175 0.0177
prederr 0.24 0.020 0.0170 0.0171 0.0170
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Thus in INDXY (modelling FPCA in regression) the choice of K resulting from the
maximization of the lower bound is dominated by the reconstruction of the X− curves.
Larger values of K may contribute to a more adequate regression and hence to better
predictions. Here the effect is weak though: for K = 2 an average absolute deviance of
the estimated T̂1m from the true T1m of 0.062 is obtained in the validation set while for
K = 4 an error of 0.055 is achieved. Similarly, for K = 2 the error in predicting T2m is
0.020 and drops to 0.017 for K > 2.

4.4 Functional discriminant analysis

In this section classification of observational units in J groups based on functional co-
variates is considered. Example 1 is continued posing a problem of binary classification.
The solutions resulting from the approximation of the lower bound based on working ob-
servations and from the softmax parametrization are compared. In the second real data
example from the field of speech recognition classification into more than two groups is
required and only the softmax parametrization is used.

Example 1 (continued).

A binary variable Y ′ was derived, indicating whether the value taken by T1 was
positive or not, that is Y ′m = 1 ⇔ T1m > 0. First, using working observations based
on an expansion in random perturbations of the logit of the relative frequencies of
ones in the Y−test data set, logits ξ̂Y

′

m were predicted, transformed to probabilities
π̂Y
′

m and predicted values of Y ′m obtained setting Ŷ ′m = 1 whenever π̂Y
′

m > 0.5. In
table 6 misclassification rates “testmc(wo)”, “valmc(wo)” are given for INDXY with
several splits of the MX =100 pairs (xm, y′m) into a test set of size M and a validation
set of size mX . Smoothing parameters found in previous analyses of the X− curves
(rXQ = 3, rXR = 5) were used. The model parameter K was searched in a range of 1
to 10 for mX ∈ {10, 20, 30} and in a range of 1 to 20 for mX ∈ {40, 50} and chosen
corresponding to the minimum misclassification rate in the test set. Based on ARD
K = 7 should have been chosen for all mX .

Table 6: Ex.1: Misclassification rates in fitting/predicting Y ′1 > 0

mX K(wo) testmc(wo) valmc(wo) testmc(lb) valmc(lb) K(lb)
10 3 0.00 0.00 0.01 0.00 2
20 4 0.00 0.00 0.04 0.00 2
30 4 0.00 0.00 0.06 0.00 5
40 18 0.05 0.05 0.05 0.00 8
50 11 0.06 0.00 0.04 0.18 8

For all test sets iterating over the points of expansion that generated working ob-
servations did not improve the misclassification rates. Comparison to classification



A. van der Linde 113

based on the softmax parametrization (that is, based on the maximum predicted log
probability η̂Y

′

jm, j = 1, 2) yields that the two approaches perform similarly well. The
corresponding misclassification rates “testmc(lb)”, “valmc(lb)” are listed in table 6.
The value K(lb) = 8 yielding a relatively high misclassification rate of 0.18 with
mX = 50 in the validation set is too low: with K(lb) = 13 the rates testmc(lb) =
0.04 and valmc(lb) = 0.08 and with K(lb) = 17 the rates testmc(lb) = 0.06 and
valmc(lb) = 0.00 could be achieved. Analyses with unrestricted ΣθX (INDY) yielded
similar results in terms of misclassification rates but required fewer latent variables in
Bouchard’s approach (“lb”). For example, for mX = 40, K(lb) = 4 was sufficient to
obtain testmc(lb) = 0.03, valmc(lb) = 0.03, and for mX = 50, K(lb) = 3 resulted in
testmc(lb) = 0.04 and valmc(lb) = 0.02.

Example 3 (speech recognition)

As an example of functional classification with more than two groups log-periodo-
grams corresponding to the phonemes “sh”, “iy”, “dcl”, “aa” and “ao” were analyzed.
The comprehensive data set is available at
http://www.stat.stanford.edu/ElemStatLearn. It was introduced by Hastie et al. (1995)
and also discussed by Ferraty and Vieu (2006, ch.8). For each of the five phonemes 50
log-periodograms were randomly selected for the test set and another 20 for the vali-
dation set. The log-periodograms of original length 256 were cut to a length of 150.
Thus the log-periodograms used here look very much the same as those displayed in
figure 2.4 in the book by Ferraty and Vieu (2006, p.16) with the classes “aa” and “ao”
being most similar. As the log-periodograms are rather rough the interpolation design
dX was chosen to be equal to the individual designs dXm with NX

m = NX = 150 points
(frequencies). A preliminary fit of the mean X− function within the spline basis yielded
the smoothing parameter rXQ (0) = 13, and similar fits for the mean residual curve within
each group suggested rXR (0) = 18. To reduce the computational burden the search for
the smoothing parameters was not further refined and the given values kept in all anal-
yses. In table 7 misclassification rates for a range of K both for FCCA and INDXY are
given, separately for the test set (“testmc”) and the validation set (“valmc”).

The misclassification rates of INDX are intermediate: best testmc = 0.20 with
valmc = 0.42 for K=7. In FCCA the correlation coefficients point to K = 2 canonical
variates only. INDXY performs strikingly better than FCCA. K = 11 would have been
chosen corresponding to the smallest testmc. A stabilization of rates can be observed,
however, for K ≥ 8, and the smaller K = 8 even yields a slightly better valmc. The
values of valmc for K ≥ 8 are well in the range of good misclassification rates reported
by Ferraty and Vieu (2006, fig.8.2, p.121). ARD for INDXY points to K = 7.

5 Discussion

Finally, some issues are to be discussed systematically which have been addressed only
occasionally in the previous sections.



114 RRR models in FDA

Table 7: Ex 3: Misclassification rates for phonemes

K FCCA INDXY
testmc valmc testmc valmc

1 0.77 0.68 0.68 0.68
2 0.67 0.62 0.38 0.38
3 0.65 0.70 0.21 0.29
4 0.70 0.62 0.16 0.15
5 0.55 0.57 0.13 0.11
6 0.13 0.11
7 0.13 0.09
8 0.11 0.07
9 0.11 0.09
10 0.11 0.08
11 0.10 0.09
12 0.13 0.07
13 0.11 0.07

5.1 Model and inference

The functional RRR model and the variational algorithm are two different, in principle
independent aspects of the given analyses. Although just the Demmler-Reinsch like ba-
sis of functions and the variational algorithm combine well to yield a convenient tool for
approximate Bayesian inference covering many standard applications, a variational al-
gorithm may become inapplicable if the model is to be extended or refined, and sampling
methods may have to be used instead. The referees expressed the concern that using
mainly variational inference to analyze RRR models in this paper the model and the
method of inference may be confounded. However, at a basic level of explorative analysis
for the examples with simulated data point estimates, credible intervals or predictions
resulting from variational inference could be validated and hence justified. At a more
subtle level of posterior dependencies, however, doubts remain. The crucial convergence
of the parameters of the inner (CCA) regression model in WinBUGS even with initial
values obtained as posterior means in variational inference indicates that more sophis-
ticated and targeted MCMC sampling strategies are needed to tell apart peculiarities
of the computational approach to inference and features of the RRR model.

5.2 Limitations and extensions of the model

The model studied in this paper is rather flexible with respect to both the error dis-
tributions and the designs under which the functions may be observed. It is limited in
as much the inner regression model is a parametric, even linear model. Several model
extensions are of interest which have already been tried occasionally but have not been
incorporated within the proposed class of models.



A. van der Linde 115

Basic functions

Instead of interpolation splines with domains in < spatial or higher dimensional inter-
polation splines could be used in the same set-up. However, smoothing parameters may
then be dimension specific, and the number of basis functions as smoothing parame-
ter can be too restrictive. Some of the examples with highly oscillating trigonometric
functions considered in the literature (e.g. by Cardot et al., 2007) cannot be handled
with the basis of splines used here. Other basis functions like the Fourier basis can be
used instead, but these are driven by different smoothing parameters and hence induce
different problems of model choice.

Error schemes

In order to robustify inference, t-distributions instead of Gaussian error distributions
are popular. They do not belong to one-parameter exponential families but can be
incorporated as mixtures of Gaussian distributions with another level of hierarchy (Ar-
chambeau et al., 2006). De la Cruz (2008) suggests a Bayesian analysis for classifying
longitudinal data under a skew elliptical error scheme.

Allowing for unknown link functions rather than the canonical link functions would
extend the flexibility of the model (Amato et al., 2006). Note however, that the choice
of the link function and the distributional assumption for the latent variables are closely
related and flexibility in one model component can compensate simplicity of the other
one.

Distribution of latent variables

The specification of the distribution of sm as a mixture of Gaussians may allow to
extend canonical correlation analysis aiming at uncorrelated pairs of canonical variates
to an analysis aiming at independent pairs of variates, in analogy to the transition
from principal component analysis to independent component analysis (Choudrey and
Roberts, 2001). Indeed, this problem has been addressed by Karhunen (2007), though
not based on a probabilistic model. However, as shown in section 3.1, the identification
of patterns of covariation ex post hinges on the Gaussian concept of covariance, and
it is not clear how to derive interpretable patterns of covariation reflecting general
dependence with non-Gaussian latent variables.
In the prediction models considered in this paper the latent vectors sm were assumed to
be multivariate Gaussian. For the different purpose of joint clustering the latent variable
may in contrast be assumed to be multinomial. This case was studied by Klami and
Kaski (2008) and by Bigelow and Dunson (2006).

Non-functional covariates

Although formally the block bivariate model appears to be symmetric in X and Y only
sub-models with functional X were considered. In particular the case of a functional
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response Y and non-functional covariates X (comprising ANOVA as treated by Reinsel
and Velu (2003) or Kaufman and Sain (2010)) and functional mixed models (dealt with
by Chiou, Müller and Wang (2004) or Morris et al. (2006)) were omitted. Bayesian
methodology for regression models with non-functional manifest regressors is advanced
and the class of models discussed in this paper may not be the most appropriate class
in that case.

5.3 Model identification

In non-functional PCA and factor analysis as well as RRR models with manifest re-
gressors (orthogonality) constraints that ensure identifiability of the model have been
proposed and might be incorporated in a prior distribution (Minka, 2001; Šmı́dl and
Quinn, 2007; Lopes and West, 2004; Geweke, 1996). In functional approaches the
orthogonality constraints are not immediately applicable conflicting with the represen-
tation in a basis of functions. Moreover in CCA the derivation of patterns of covariation
corresponds to a particular identification of the RRR. This is involved because of the
pre-standardization of the random vectors as the formula for LZ (31) demonstrates.
Canonical variates, (linear) discriminant functions and predictor effects are not incor-
porated in the parameterization and the prior, and the resulting necessity to derive
patterns of covariation in a post processing step is a principled weakness of the RRR
model. Further work is needed to resolve these problems.

5.4 Inference

The relative simplicity of the RRR model, compared to more ambitious non-parametric
approaches, allows for the approximate closed form posterior inference and thus for a
pragmatic Bayesian approach to FDA which is not computationally intensive and may
be a good starting point also for the development of more complex models and more
elaborate Bayesian inference. Efficient MCMC algorithms or hybrid methods still have to
be developed, and model choice based on posterior sampling needs further investigation.
Furthermore, the accuracy of the approximate Bayesian inference is to be evaluated in
comparison to MCMC inference.

Performance of variational inference

The performance of the proposed approach cannot be evaluated analyzing only three
examples. Therefore, many more examples particularly with real data sets and differ-
ent sampling schemes were analyzed which are described in the technical report (van
der Linde, 2010). The following comments are based on this more comprehensive ex-
perience. Also, as to its performance the cautionary remarks by van der Linde (2009)
concerning the interactions of required sample sizes and degrees of smoothness of the un-
derlying curves and about the appropriateness of the chosen basis functions in functional
principal component analysis apply here as well, in particular to functional canonical
correlation analysis.



A. van der Linde 117

With the examples for FCCA it was demonstrated that the proposed computational
approach works well: interpretable functional patterns of covariation can be extracted
and inference is sensitive to loss of information in the data. The approach is coherent
with multivariate CCA for discretized curves (if applicable), but various error schemes
and partial designs can also be handled.

Prediction in general requires that not only common features of curves like the
principal modes of (co-)variation can be detected, but that individual curves can be
discriminated by the latent variables, and - moreover - that the dependence struc-
ture modelled in regression is strong enough to transfer identification of of X− curves
by latent variables to identification of Y− values by latent variables. With the first
(running) example a synthetic data set with strong dependence in regression was de-
vised, and prediction was satisfactory for all Y− scales (functional, scalar, multinomial).
This example thus demonstrates that the approach does work if there is a pronounced
structure of dependence. In other examples (example 2 and gait data (not shown)),
however, (poor) prediction by mean values was observed. The introduction of the error
ΣθY not only in FCCA but also in predictive models like INDXY provides a diag-
nostic tool to assess the strength of a tendency towards the mean: a comparison of
E(θZm|x̃, D′) to E(GZ |x̃, D′)E(sm|x̃, D′) for observed Zm often reveals a good fit of
E(θZm|x̃, D′), that is, good filtering or de-noising, but a poor explanation of E(θZm|x̃, D′)
by E(GZ |x̃, D′)E(sm|x̃, D′).

In functional prediction poor predictive performance was attributed to a weak rela-
tion between X− and Y− curves in the data set. In scalar prediction in contrast not a
single weak but too many strong relations between X and Y may pose a problem. With
spectrometric data (not shown)) the inherent prediction by principal components was
not competitive in comparison to more sophisticated methods. Although the analyses
always did yield reasonable indications of structure there is some inertia in the repro-
duction of individual values (or curves) by latent variables. This was already observed
for FPCA by van der Linde (2009) and showed up again in regression where prediction
based on multivariate manifest principal components outperformed prediction based on
“latent principal components”. There was no evidence that this performance was related
to unlucky or misleading initial values resulting possibly in inappropriate or insufficient
model identification. However, the curves over-determined the scalar responses. The
analyses of spectrometric data thus point to the limits of the class of models discussed
here (that is, to the limits of PCA). In functional and scalar prediction no marked
difference between FCCA or INDY and INDXY could be observed.

In functional classification the variational algorithms based on an approximate lower
bound induced by working observations and based on a valid lower bound induced by
pseudo observations using the softmax parametrization were compared only for example
1 where both approaches performed similarly well. The results using working observa-
tions, also those obtained for Poisson data, are encouraging and working observations
should be tried particularly if there is no alternative. Focusing on Bouchard’s approach
INDXY and INDY outperformed FCCA. This may be explained by the fact that in the
softmax parametrization there is a dependence between the parameters which is caught
in sm by the decomposition cov(θYm|GY , sm) = σ2

θY IrYR + GY sms
T
m(GY )T in IND(X)Y.
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In contrast, in FCCA ΣθY instead of σ2
θY IrYR occurs in the decomposition, and with sm

only the dependency within θYm may not be fully recovered. (In functional prediction
dependence between function values is caught in the basis functions, not in the coeffi-
cients θZm.) The misclassification rates obtained with the variational algorithm applied
to the RRR model were excellent for simulated data and comparable to those reported
for similar methods in speech recognition. Hence prediction on the rougher nominal
scale worked better than on the continuous scale where higher accuracy is required.

Model choice based on variational inference

Model choice remains a crucial issue. A major advantage of the lower bound as a crite-
rion for model choice is that is computationally cheap being calculated as a byproduct
for monitoring programming and convergence of variational inference anyway. Together
with the simplicity of the smoothing parameters related to the Demmler-Reinsch like
basis of functions it is a main ingredient of a fast and pragmatic approach. However,
it turned out to be of no use for choosing the number of latent variables K in FCCA
and INDY (seemingly due to the Wishart distribution). In scalar prediction the asym-
metry between X and Y affects the lower bound, and in classification the inclusion of
variational parameters does not allow for comparisons. Only in functional prediction
with INDXY it turned out to work. Hence, in most cases the lower bound does not
point to an adequate value of K. The alternative of ARD is computationally not more
expensive, but can be ambiguous. Canonical correlation coefficients again can easily be
computed, but turned out to be instable with an increasing number of iterations. More
experiences need to be reported in this respect.

Implementation in WinBUGS

The RRR model can easily be implemented in WinBUGS and posterior sampling initial-
ized with estimates obtained by variational inference. In the multivariate CCA model
with simulated coefficients θZm the extraction of patterns of covariation could not be
essentially improved in this way, but the error assessment might be more accurate.
Convergence of the values of the latent variables sm remained doubtful even after a
long period (350000 updates) of burn-in. In FCCA the situation is worse because the
inner regression model is specified at the third level of hierarchy (and coefficients θZm
are estimated). Convergence proceeds from the outer model (function values close to
the data) to the inner model. Computing times in WinBUGS for the full functional
model were in the range of 5.5 to 7.5 hours for 20000 updates used for inference after
10000 samples of burn-in. This is prohibitive for model choice based on a criterion like
DIC. Posterior sampling is computer intensive, but in FCCA MCMC did improve vari-
ational inference. Sampling should be initialized by preliminary estimates (which can
be obtained using variational inference with two minutes of computing time), in order
to avoid even longer chains to achieve convergence.
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5.5 Dependence between multivariate non-Gaussian variables

In the hierarchical model investigated in this paper the dependence between observed
vectors is specified by a latent regression model for conditionally Gaussian parameter
vectors, that is, by a covariance structure. No attempt has been made to extend CCA
directly to non-Gaussian multivariate distributions like the multivariate Bernoulli or
multivariate Poisson distribution. A particularly interesting extension with applications
in ecology would be the analysis of dependence between sets of (a priori) Dirichlet
distributed profiles observed under “multinomial noise”. “Principal profiles” fitting
into the concepts discussed here were already studied by Hastie and Little (1987).

Appendices

Appendix 1: Update rules for functional CCA

with MX = M +mX ≥MY = M.

�

sm ∼ N(µ∗sm ,Σ
∗
sm).

For m = 1, ...,M

Σ∗sm =
(〈

(GX)TΛθXG
X + (GY )TΛθY G

Y
〉

+ IK
)−1

,

µ∗sm = Σsm
(〈
GX
〉T 〈ΛθX 〉 〈θXm〉+

〈
GY
〉T 〈ΛθY 〉 〈θYm〉) .

For m = M + 1, ...,MX

Σ∗sm =
(〈

(GX)TΛθXG
X+
〉

+ IK
)−1

,

µ∗sm = Σsm
(〈
GX
〉T 〈ΛθX 〉 〈θXm〉) .

�

δZ ∼ N(µ∗δZ ,Σ
∗
δZ ).

Σ∗δZ =

MZ∑
m=1

(QZm)T 〈ΛZm〉QZm + λ0
δZ IrZQ

−1

,

µ∗δZ = Σ∗δZ

MZ∑
m=1

(QZm)T 〈ΛZm〉 (Zm −RZm
〈
θZm
〉
)


where ΛZm = λZINZm .
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� For m = 1, ...,MZ

θZm ∼ N(µ∗θZm ,Σ
∗
θZm

),

Σ∗θZm =
(
(RZm)T 〈ΛZm〉RZm + 〈ΛθZ 〉

)−1
,

µ∗θZm = Σ∗θZm
(
(RZm)T 〈ΛZm〉 (Zm −QZm

〈
δZ
〉
) + 〈ΛθZ 〉

〈
GZ
〉
〈sm〉

)
.

�

λZ ∼ Γ(α∗λZ , β
∗
λZ ).

α∗λZ = α0
λZ +

1
2

MZ∑
m=1

NZ
m,

β∗λZ = β0
λZ +

1
2

MZ∑
m=1

〈
||z̃m||2

〉
where z̃m = zm −QZmδZ −RZmθZm.

�

ΛθZ ∼W (ν∗Z , (C
∗
Z)−1)

ν∗Z = ν0
Z +MZ

C∗Z = C0
Z +

〈
MZ∑
m=1

(θZm −GZsm)(θZm −GZsm)T
〉

�

γZk ∼ N(µ∗γZk ,Σ
∗
γZk

)

Σ∗γZk =
(〈
||s̃k||2ΛθZ + λγZk IrZR

〉)−1

where s̃k denotes the k-th row of S,

µ∗γZk
= Σ∗γZk 〈ΛθZ 〉

〈
MZ∑
m=1

θZmskm −GZ−kS−ks̃Tk

〉

where GZ−k equals GZ without the k-th column and S−k equals S without the k-th
row. See also (van der Linde, 2008, section 3.3).
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�

λγZk ∼ Γ(α∗λ
γZ
k

, β∗λ
γZ
k

)

α∗λ
γZ
k

= α0
λ
γZ
k

+
1
2
rZR

β∗λ
γZ
k

= β0
λ
γZ
k

+
1
2
〈
||γZk ||2

〉
.

The number of iterations needed varied between 3 and 20.

Appendix 2: Modification of update of ΛθZ

under independence in functional prediction

If ΛθZ = λθZ IrZR and apriori (17) holds, then aposteriori independently

λθZ ∼ Γ(α∗λθZ , β
∗
λθZ

),

α∗λθZ = α0
λθZ

+
1
2
MZrZR,

β∗λθZ = β0
λθZ

+
1
2
tr

〈
MZ∑
m=1

(θZm −GZsm)(θZm −GZsm)T
〉
.

Appendix 3: Default values

Denote again by In the identity matrix of dimension n and by Jn×m a matrix of ones
with n rows and m columns. Let further randU(n,m) be a n×m− matrix with entries
which are simulated from a uniform distribution on (0,1) and similarly randN(n,m) a
matrix the entries of which are simulated from a standard Normal distribution.

A3.1 Hyperparameters

In (8): λ0
δZ = 10−3.

In (9): α0
λZ

= β0
λZ

= 10−3.

In (15): α0
λ
γZ
k

= β0
λ
γZ
k

= 10−3, for k = 1, ...,K.

In (16): ν0
Z = rZR + 2, C0

Z = 10−3IrZR ,

alternatively in (17): α0
θZ = β0

θZ = 10−3.
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A3.2 Initial values

µ+
sm = randN(K, 1), Σ+

sm = IK for m = 1, ...,M.

µ+
δZ

= JrZQ×1, Σ+
δZ

= IrZQ .

µ+
θZm

= randN(rZR, 1), Σ+
θZm

= IrZR for m = 1, ...,M.

α+
λZ

= β+
λZ

= 1.

ν+
Z = rZR + 2, C+

Z = IrZR , alternatively α+
θZ

= β+
θZ

= 1.

µ+
γZk

= randU(rZR, 1), Σ+
γZk

= IrZR , for k = 1, ...,K.

α+
λ
γZ
k

= β+
λ
γZ
k

= 1, for k = 1, ...,K.

Appendix 4: Update of variational parameters in Bouchard’s algorithm

Denote the initial (approximate factorized) posterior distribution by q(0) and an
initial variational parameter a by a(0,1) = (a(0,1)

1 , ..., a
(0,1)

MY ).

For l = 1, ...L:

From q(h), a(h,l) obtain the variational parameters ζ(h,l)
m = (ζ(h,l)

1m , ..., ζ
(h,l)
Jm ),

m = 1, ...,MY by

ζ
(h,l)
jm = [Eq(h)(η2

jm) + (a(h,l)
m )2 − 2a(h,l)

m Eq(h)(ηjm)]1/2.

For l = 2, ...L:

From q(h), ζ(h,l−1) obtain the variational parameters a(h,l)
m , m = 1, ...,MY

by

a(h,l)
m =

1
2 (J2 − 1) +

∑J
j=1 g(ζ(h,l−1)

jm )Eq(h)(ηjm)∑J
j=1 g(ζ(h,l−1)

jm )

using g from (27).

Given a(h,L)
m and ζ(h,L)

m calculate pseudo observations v(h)
m according to equations (24)

to (28) for m = 1, ...,MY . q(h) and v(h) = (v(h)
1 , ..., v

(h)

MY ) then yield a new posterior
distribution q(h+1), and setting a(h+1,1) := a(h,L) the process can be iterated.



A. van der Linde 123

References
Amato, U., Antoniadis, A., and Feis, I. D. (2006). “Dimension Reduction in Functional

Regression with Applications.” Computational Statistics and Data Analalysis, 50:
2422–2446.

Archambeau, C., Delannay, N., and Verlysen, M. (2006). “Robust Probabilistic Pro-
jections.” In Proceedings of the 23rd international conference on Machine Learning,
ACM International Conference Proceeding Series, volume 148, 33 – 40.

Attias, H. (1999). “Inferring Parameters and Structure of Latent Variable Models by
Variational Bayes.” In Laskey, K. and Prade, H. (eds.), UAI ’99: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, 21–30.

Bach, F. and Jordan, M. (2005). “A probabilistic interpretation of canonical correla-
tion analysis.” Technical Report 688. Dept. of Statistics, University of California,
Berkeley.

Baladandayuthapani, V., Mallick, B., Hong, M., Lupton, J., Turner, N., and Carroll, R.
(2007). “Bayesian Hierarchical Spatially Correlated Functional Data Analysis with
Application to Colon Carcinogesis.” Biometrics, 64: 64–73.

Bigelow, J. and Dunson, D. (2006). “Bayesian semiparametric clustering of functional
predictors.” URL: http://ftp.isds.duke.edu/WorkingPapers/06-13.pdf.

Bouchard, G. (2007). “Efficient bounds for the Softmax Function and Applications to
Approximate Inference in Hybrid models.” In Neural Information Processing Systems
Conference, Whistler, Canada, December 7-8.

Bougeard, S., Hanafi, M., and Qannari, E. (2008). “Continuum redundancy-PLS regres-
sion: A simple continuum approach.” Computational Statistics and Data Analysis,
52: 3686–3696.

Brooks, R. and Stone, M. (1994). “Joint continuum regression with multiple predic-
tands.” Journal of the American Statistical Association, 89: 1374–1377.

Cardot, H., Crambes, C., Kneip, A., and Sarda, P. (2007). “Smoothing splines estima-
tors in functional linear regression with errors-in-variables.” Computational Statistics
and Data Analysis, 51: 4832–4848.

Chiou, J.-M., Mueller, H.-G., and Wang, J.-L. (2004). “Functional response models.”
Statistica Sinica, 14: 659–677.

Choudrey, W., Penny, W., and Roberts, S. (2000). “An ensemble learning approach
to independent component analysis.” In Proceedings IEEE Workshop on Neural
Networks for Signal Processing, Sydney, Australia, December 2000, 435–444. IEEE
Press.

Choudrey, W. and Roberts, S. (2001). “Flexible Bayesian Independent Component
Analysis for Blind Source Separation.” In Proceedings of ICA-2001, San Diego, De-
cember 2001.



124 RRR models in FDA

Davidian, M., Lin, X., and Wang, J.-L. (2004). “Emerging Issues in Longitudinal and
Functional Data Analysis. Introduction.” Statistica Sinica, 14: 613–614.

De la Cruz, R. (2008). “Bayesian non-linear regression models with skew-elliptical errors:
Applications to the classification of longitudinal profiles.” Computational Statistics
and Data Analysis, 53: 436–449.

Dunson, D., Herring, A., and Siega-Riz, A. (2008). “Bayesian inference on changes
in response densities over predictor clusters.” Journal of the American Statistical
Association, 103: 1508–1517.

Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. New York:
Springer.

Frank, I. and Friedman, H. (1993). “A Statistical View of Some Chemometrics Regres-
sion Tools.” Technometrics, 35: 109–148. (with discussion).

Geweke, J. (1996). “Bayesian reduced rank regression in econometrics.” Journal of
Econometrics, 75: 121–146.

Hastie, T., Buja, A., and Tibshirani, R. (1995). “Penalized discriminant analysis.”
Annals of Statistics, 13: 435–475.

Hastie, T. and Little, F. (1987). “Principal Profiles.” URL: http://www-
stat.stanford.edu/˜hastie/Papers/PrincipalProfiles.pdf.

James (2002). “Generalized linear models with functional predictors.” Journal of the
Royal Statistal Society B, 64: 411–432.

James, G. and Hastie, T. (2001). “Functional linear discriminant analysis for irregularly
sampled curves.” Journal of the Royal Statistal Society B, 63: 533–550.

Karhunen, J. (2007). “Extending ICA for finding jointly dependent components for two
related data sets.” Neurocomputing , 70: 2969–2979.

Kaufman, C. and Sain, S. (2010). “Bayesian Functional ANOVA Modeling Using Gaus-
sian Process Prior Distributions.” Bayesian Analysis, 5: 123–150.

Klami, A. and Kaski, S. (2008). “Probabilistic approach to detecting dependencies
between data sets.” Neurocomputing , 72: 39–46.

Lopes, H. and West, M. (2004). “Bayesian Model Assessment in Factor Analysis.”
Statistica Sinica, 14: 41–67.

MacLehose, R. and Dunson, D. (2009). “Nonparametric Bayes kernel-based priors for
functional data analysis.” Statistica Sinica, 19: 611–629.

Manteiga, W. and Vieu, P. (2007). “Statistics for Functional Data.” Computational
Statistics and Data Analysis, 51: 4788–4792.



A. van der Linde 125

Mardia, K., Kent, J., and Bibby, J. (1979). Multivariate Analysis. London: Academic
Press.

Merola, M. and Abraham, B. (2001). “Dimensionality reduction approach to multivari-
ate prediction.” Canadian Journal of Statistics, 29: 191–200.

Minka, T. (2001). “Automatic choice of dimensionality for PCA.” In Leen, T., Dieterich,
T., and Tresp, V. (eds.), Advances in Neural Information Processing Systems, vol-
ume 13, 598–604. MIT Press.

Morris, J., Brown, P., Baggerly, K., and Coombes, K. (2006). “Analysis of Mass Spec-
trometry Data Using Bayesian Wavelet-Based Functional Mixed Models.” In Do, K.,
Mueller, P., and Vannucci, M. (eds.), Bayesian Inference for Gene Expression and
Proteomics, 269–288. New York: Cambridge University Press.

Petrone, S., Guindani, M., and Gelfand, A. (2009). “Hybrid Dirichlet mixture models
for functional data.” Journal of the Royal Statistal Society B, 71: 755–782.

Preda, C. (2007). “Regression models for functional data by reproducing kernel Hilbert
space methods.” Journal of Statistical Planning and Inference, 137: 829–840.

Ramsay, J. and Silverman, B. (2002). Applied Functional Data Analysis: Methods and
Case Studies. New York: Springer.

— (2005). Functional Data Analysis. New York: Springer, 2nd edition.

Ray, S. and Mallick, B. (2006). “Functional clustering by Bayesian wavelet methods.”
Journal of the Royal Statistal Society B, 68: 305–332.

Reinsel, G. and Velu, R. (1998). Multivariate reduced-rank regression. New York:
Springer.

— (2003). “Reduced-rank growth curve models.” Journal of Statistical Planning and
Inference, 114: 107–129.

Rish, I., Grabarnik, G., Cecchi, G., Pereira, F., and Gordon, G. J. (2008). “Closed-
form supervised dimensionality reduction with generalized linear models.” In ACM
Int. Conf. Proc. Series, volume 307, 832–839. New York: ACM.

Rodriguez, A., Dunson, D., and Gelfand, A. (2009). “Bayesian non-parametric func-
tional data analysis through density estimation.” Biometrika, 96: 149–162.

Schmidli, H. (1995). Reduced Rank Regression. Heidelberg: Physica-Verlag.

Smidl, V. and Quinn, A. (2007). “On Bayesian principal component analysis.” Com-
putational Statistics and Data Analysis, 51: 4101–4123.

Srivastava, M. (2007). “Reduced Rank Discrimination.” Scandinavian Journal of Statis-
tics, 24: 115–124.



126 RRR models in FDA

Sundberg, R. (2002). “Continuum Regression.” In Encyclopedia of Statistical Sciences.
New York: Wiley.

Thompson, W. and Rosen, O. (2008). “A Bayesian model for sparse functional data.”
Biometrics, 64: 54–63.

Tipping, M. and Bishop, C. (1999). “Probabilistic principal component analysis.” Jour-
nal of the Royal Statistal Society B, 21: 611–622.

Valderrama, M. (2007). “An overview to modelling functional data.” Computational
Statistics, 22: 331–334.

van der Linde, A. (2008). “Variational Bayesian functional PCA.” Computational
Statistics and Data Analysis, 53: 517–533.

— (2009). “Bayesian functional principal components analysis for binary and count
data.” Advances in Statistical Analysis, 93: 307–333.

— (2010). “Reduced rank regression in Bayesian FDA.” Technical report. Department
of Mathematics, Institute of Statistics, University of Bremen, Germany .

von Storch, H. and Zwiers, F. (1999). Statistical Analysis in Climate Research. Cam-
bridge: Cambridge University Press.

Wang, C. (2007). “Variational Bayesian approach to canonical correlation analysis.”
IEEE Transactions on Neural Networks, 18: 905–910.

West, M. (2003). “Bayesian Factor Regression Models in the Large p, Small n
Paradigm.” In et al., J. B. (ed.), Bayesian Statistics 7, 733–742. Oxford University
Press.

Yee, T. and Hastie, T. (2003). “Reduced-rank Vector Generalized Linear Models.”
Statistical Modelling , 3: 15–41.

Yu, S., Yu, K., Tresp, V., Kriegel, H.-P., and Wu, M. (2006). “Supervised probabilistic
principal component analysis.” In Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA,
464–473. New York: ACM.

Zhang, D., Lin, X., and Sowers, M. (2007). “Two-Stage Functional Mixed Models
for Evaluating the Effect of Longitudinal Covariate Profiles on Scalar Outcome.”
Biometrics, 63: 351–362.

Acknowledgments

The comments and suggestions of referees and editors helped to improve earlier drafts of this

paper and are gratefully acknowledged.


