Open Access
2015 Bessel multipliers in Hilbert $C^\ast$--modules
Amir Khosravi, Morteza Mirzaee Azandaryani
Banach J. Math. Anal. 9(3): 153-163 (2015). DOI: 10.15352/bjma/09-3-11

Abstract

In this paper we introduce Bessel multipliers, g-Bessel multipliers and Bessel fusion multipliers in Hilbert $C^\ast$--modules and we show that they share many useful properties with their corresponding notions in Hilbert and Banach spaces. We show that various properties of multipliers are closely related to their symbols and Bessel sequences, especially we consider multipliers when their Bessel sequences are modular Riesz bases and we see that in this case multipliers can be composed and inverted. We also study bounded below multipliers and generalize some of the results obtained for fusion frames in Hilbert spaces to Hilbert $C^\ast$--modules.

Citation

Download Citation

Amir Khosravi. Morteza Mirzaee Azandaryani. "Bessel multipliers in Hilbert $C^\ast$--modules." Banach J. Math. Anal. 9 (3) 153 - 163, 2015. https://doi.org/10.15352/bjma/09-3-11

Information

Published: 2015
First available in Project Euclid: 19 December 2014

zbMATH: 1311.42083
MathSciNet: MR3296131
Digital Object Identifier: 10.15352/bjma/09-3-11

Subjects:
Primary: 42C15
Secondary: 46H25 , 47A05

Keywords: Bessel multiplier , Bessel sequence , Hilbert $C^\ast$--module , modular Riesz basis

Rights: Copyright © 2015 Tusi Mathematical Research Group

Vol.9 • No. 3 • 2015
Back to Top