Open Access
Translator Disclaimer
2014 Skew symmetry of a class of operators
Chun Guang Li, Ting Ting Zhou
Banach J. Math. Anal. 8(1): 279-294 (2014). DOI: 10.15352/bjma/1381782100

Abstract

An operator $T$ on a complex Hilbert space $\mathcal{H}$ is said to be skew symmetric if there exists a conjugate-linear, isometric involution $C:\mathcal{H}\rightarrow\mathcal{H}$ such that $CTC=-T^*$. In this paper, using an interpolation theorem related to conjugations, we give a geometric characterization for a class of operators to be skew symmetric. As an application, we get a description of skew symmetric partial isometries.

Citation

Download Citation

Chun Guang Li. Ting Ting Zhou. "Skew symmetry of a class of operators." Banach J. Math. Anal. 8 (1) 279 - 294, 2014. https://doi.org/10.15352/bjma/1381782100

Information

Published: 2014
First available in Project Euclid: 14 October 2013

zbMATH: 1295.47014
MathSciNet: MR3161695
Digital Object Identifier: 10.15352/bjma/1381782100

Subjects:
Primary: 47B25
Secondary: 47A65

Rights: Copyright © 2014 Tusi Mathematical Research Group

JOURNAL ARTICLE
16 PAGES


SHARE
Vol.8 • No. 1 • 2014
Back to Top