Open Access
Translator Disclaimer
2012 An extension of Ky Fan's dominance theorem
Rahim Alizadeh, Mohammad B. Asadi
Banach J. Math. Anal. 6(1): 139-146 (2012). DOI: 10.15352/bjma/1337014672

Abstract

We prove that for a separable Hilbert space $\mathcal{H}$ with an orthonormal basis $\{e_i\}_{i=1}^\infty$, the equality $\|\cdot\| =\|\sum_{i=1}^{\infty}s_i(\cdot)e_i\otimes e_i \|$ holds for all unitarily invariant norms on $\mathbb{B}(\mathcal{H})$ and Ky Fan's dominance theorem remains valid on $\mathbb{B}(\mathcal{H})$.

Citation

Download Citation

Rahim Alizadeh. Mohammad B. Asadi. "An extension of Ky Fan's dominance theorem." Banach J. Math. Anal. 6 (1) 139 - 146, 2012. https://doi.org/10.15352/bjma/1337014672

Information

Published: 2012
First available in Project Euclid: 14 May 2012

zbMATH: 1243.47025
MathSciNet: MR2862550
Digital Object Identifier: 10.15352/bjma/1337014672

Subjects:
Primary: 47A05
Secondary: 47A30

Keywords: $s$-numbers, , , Ky Fan norm , ‎unitarily invariant norm

Rights: Copyright © 2012 Tusi Mathematical Research Group

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.6 • No. 1 • 2012
Back to Top