

Banach J. Math. Anal. 6 (2012), no. 1, 139–146

 ${f B}$ anach ${f J}$ ournal of ${f M}$ athematical ${f A}$ nalysis

ISSN: 1735-8787 (electronic)

 ${\bf www.emis.de/journals/BJMA/}$

AN EXTENSION OF KY FAN'S DOMINANCE THEOREM

RAHIM ALIZADEH 1 AND MOHAMMAD B. ASADI 2*

Communicated by F. Kittaneh

ABSTRACT. We prove that for a separable Hilbert space \mathcal{H} with an orthonormal basis $\{e_i\}_{i=1}^{\infty}$, the equality $\|\cdot\| = \|\sum_{i=1}^{\infty} s_i(\cdot)e_i \otimes e_i\|$ holds for all unitarily invariant norms on $\mathbb{B}(\mathcal{H})$ and Ky Fan's dominance theorem remains valid on $\mathbb{B}(\mathcal{H})$.

1. Introduction

There has been a great interest in studying unitarily invariant norms and symmetric norm ideals on $\mathbb{B}(\mathcal{H})$ in the last few decades (see, e.g., [1]-[4],[5],[7],[9]-[12] and the references therein). A norm $\|\cdot\|$ on a non-zero ideal \mathcal{J} of $\mathbb{B}(\mathcal{H})$ is called unitarily invariant if $\|UTV\| = \|T\|$ for all unitary operators $U, V \in \mathbb{B}(\mathcal{H})$ and $T \in \mathcal{J}$. The *i*th s-number of an operator T on \mathcal{H} is displayed by $s_i(T)$ and is given by

$$s_i(T) = \inf\{\|T - F\|_{op} : F \in \mathbb{B}(\mathcal{H}) \text{ has rank } < i\},$$

where $\|\cdot\|_{op}$ denotes the usual operator norm on $\mathbb{B}(\mathcal{H})$. Note that every finite rank operator belongs to any non-zero ideal of $\mathbb{B}(\mathcal{H})$.

Typical examples of unitarily invariant norms on $\mathbb{B}(\mathcal{H})$ are Ky Fan k-norms that are defined by $N_k(\cdot) = s_1(\cdot) + \cdots + s_k(\cdot)$ [3], see also [10]. We say that a norm $\|\cdot\|$ on \mathcal{J} , satisfies Ky Fan's dominance theorem, if for every $T, R \in \mathcal{J}$, with $N_k(T) \leq N_k(R)$ for all $k \in \mathbb{N}$, the inequality $\|T\| \leq \|R\|$ holds. Ky Fan's dominance theorem holds for \mathcal{J} if it holds for all unitarily invariant norms on \mathcal{J} .

Date: Received: 26 July 2011; Accepted: 9 November 2011.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A05; Secondary 47A30.

In the finite dimensional case, owing to the presence of the singular value decomposition (SVD), there is a nice representation of unitarily invariant norms as symmetric gauge functions [2, Theorem 3.5.18], which plays a major role in solving problems and proving theorems in the finite dimensional case. In fact using SVD, we conclude that for every matrix $A \in \mathbb{M}_n(\mathbb{C})$ the equality $||A|| = ||diag(s_1(A), \dots, s_n(A))||$ is satisfied for all unitarily invariant norms on $\mathbb{M}_n(\mathbb{C})$, where $\mathbb{M}_n(\mathbb{C})$ is the algebra of all $n \times n$ matrices with the entries in \mathbb{C} .

In this paper we prove an alternative equality in the infinite dimensional case. In fact, we show if \mathcal{H} is a separable Hilbert space with an orthonormal basis $\{e_i\}_{i=1}^{\infty}$, the equality $\|\cdot\| = \|\sum_{i=1}^{\infty} s_i(\cdot)e_i \otimes e_i\|$ holds for all unitarily invariant norms on $\mathbb{B}(\mathcal{H})$, where $(s_i(\cdot)e_i \otimes e_i)(h) = s_i(\cdot) < h, e_i > e_i$, for all $h \in \mathcal{H}$. As a corollary we conclude that for a separable Hilbert space \mathcal{H} , Ky Fan's dominance theorem remains valid on $\mathbb{B}(\mathcal{H})$.

2. Unitarily invariant norms on $\mathbb{B}(\mathcal{H})$

Thought this section, when we say \mathcal{J} is a non-zero ideal of $\mathbb{B}(\mathcal{H})$, it is possible for \mathcal{J} to be equal the whole $\mathbb{B}(\mathcal{H})$. Also $\|\cdot\|$ will be an arbitrary unitarily invariant norm on $\mathbb{B}(\mathcal{H})$. We say that a norm $\||\cdot\||$ on \mathcal{J} is symmetric if $\||T_1ST_2\|| \leq \|T_1\|_{op}\||S\||\|T_2\|_{op}$ for all $T_1, T_2 \in \mathbb{B}(\mathcal{H})$ and $S \in \mathcal{J}$.

Lemma 2.1. Every unitarily invariant norm $\|\cdot\|$ on a non-zero ideal \mathcal{J} of $\mathbb{B}(\mathcal{H})$ is symmetric.

Proof. Let $T \in \mathbb{B}(\mathcal{H})$, $S \in \mathcal{J}$ and consider a real number $\alpha > 1$. By [8], there are unitary elements U_1, \dots, U_n in $\mathbb{B}(\mathcal{H})$ such that $\frac{T}{\alpha \|T\|_{op}} = \frac{U_1 + \dots + U_n}{n}$. Hence

$$||TS|| = \alpha ||T||_{op} \left\| \frac{T}{\alpha ||T||_{op}} S \right\| = \alpha ||T||_{op} \left\| \frac{U_1 + \dots + U_n}{n} S \right\| \le \alpha ||T||_{op} ||S||.$$

Since $\alpha > 1$ is arbitrary, the inequality $||TS|| \leq ||T||_{op}||S||$ holds. Similarly we can show that $||ST|| \leq ||S|| ||T||_{op}$.

Corollary 2.2. Let $\|\cdot\|$ be a unitarily invariant norm on a non-zero ideal $\mathcal J$ of $\mathbb B(\mathcal H)$ and $T,S\in\mathcal J$. Then

- (i) ||T|| = ||T||.
- (ii) $||T|| = ||T^*||$.
- (iii) ||p|| = ||q||, for any equivalent projections p and q in \mathcal{J} .
- (iv) If $T \ge S \ge 0$, then $||T|| \ge ||S||$.

Proof. The polar decomposition T = u|T| of T implies that $|T| = u^*T$, $T^* = |T|u^*$ and $|T| = T^*u$. Also, if p and q are equivalent then $p = vv^*$ and $q = v^*v$, for some partial isometry v in $\mathbb{B}(\mathcal{H})$ and hence we have $v^*pv = q$ and $vqv^* = p$. If $T \geq S \geq 0$, there is an operator R with $||R||_{op} \leq 1$ such that S = RT. These arguments together with Lemma 2.1 imply (i)-(iv).

Lemma 2.3. Let \mathcal{J} be a non-zero ideal of $\mathbb{B}(\mathcal{H})$, $T \in \mathcal{J}$ and P be a projection of rank one. For every unitarily invariant norm $\|\cdot\|$ on \mathcal{J} the inequality $\|T\| \geq \|P\| \|T\|_{op}$ holds.

Proof. Suppose $T \neq 0$ and consider a sequence $\{x_n\}_{n=1}^{\infty}$ in \mathcal{H} such that $||x_n|| = 1$, for all n and $\lim_{n\to\infty} ||T(x_n)|| = ||T||_{\text{op}}$. Without loss of generality we can suppose that $T(x_n) \neq 0$, for all $n \in \mathbb{N}$. Let U_n be a unitary operator that $U_n(\frac{T(x_n)}{||T(x_n)||}) = x_n$. Setting $P_n = x_n \otimes x_n$ we have

$$||T|| = ||P_n||_{\text{op}} ||T|| \ge ||TP_n|| \qquad = \left\| \frac{T(x_n)}{||T(x_n)||} \otimes x_n \right\| ||T(x_n)||$$

$$= \left\| U_n \left(\frac{T(x_n)}{||T(x_n)||} \otimes x_n \right) \right\| ||T(x_n)||$$

$$= ||x_n \otimes x_n|| ||T(x_n)||$$

$$= ||P_n|| ||T(x_n)||$$

$$= ||P|| ||T(x_n)||,$$

where the last equality has resulted from (iii) of Corollary 2.2. Now if $n \to \infty$ we get the desired result.

Corollary 2.4. If P is a projection of rank one in $\mathbb{B}(\mathcal{H})$ then

$$||P|| ||T||_{op} \le ||T|| \le ||I|| ||T||_{op} (T \in \mathbb{B}(\mathcal{H})),$$

where I is the identity operator on \mathcal{H} . Therefore, all unitarily invariant norms on $\mathbb{B}(\mathcal{H})$ are equivalent to the operator norm.

Corollary 2.5. If P is a projection of rank one in $\mathbb{B}(\mathcal{H})$ and ||P|| = ||I||, then $||\cdot||$ is a multiple of the operator norm.

Lemma 2.6. Suppose $\{e_i\}_{i=1}^{\infty}$ is an orthonormal sequence in \mathcal{H} . For positive diagonal operator $T = \sum_{i=1}^{\infty} \lambda_i e_i \otimes e_i \ (\lambda_i \geq 0)$, let $E = \{\lambda_i \mid i = 1, 2, \cdots\}$. Then $(i) \ s_1(T) = \|T\|_{op} = \sup_{j \in \mathbb{N}} \lambda_j$.

(ii) If there exist k-1 distinct positive integers n_1, \dots, n_{k-1} such that $s_i(T) = \lambda_{n_i}$ $(1 \le i \le k-1)$, then $s_k(T) = \sup_{j \notin \{n_1, \dots, n_{k-1}\}} \lambda_j$. Also, if $s_k(T)$ is a limit point of E, then for every $i \in \mathbb{N}$, we have $s_{k+i}(T) = s_k(T)$.

(iii) If there is no s-number of T that is a limit point of E, then there are distinct positive integers n_1, n_2, \ldots such that $s_i(T) = \lambda_{n_i}$, $i \in \mathbb{N}$. Otherwise there is positive integer k and k-1 distinct natural numbers n_1, \ldots, n_{k-1} such that $s_i(T) = \lambda_{n_i}$, $1 \le i \le k-1$ and $s_k(T) = s_{k+1}(T) = \cdots$. In both cases, for every positive integer i, we have $s_i(T) = \sup_{\lambda_j \le s_i(T)} \lambda_j$.

Proof. (i) This is a well known fact [6, Problem 63].

(ii) If k = 1 the equality is resulted from (i). Otherwise setting

$$F = \sum_{i=1}^{k-1} \lambda_{n_i} e_{n_i} \otimes e_{n_i},$$

we have rank(F) < k and so

$$s_k(T) \le ||T - F||_{op} = \sup_{j \notin \{n_1, \dots, n_{k-1}\}} \lambda_j.$$

On the other hand if for every $j \in \mathbb{N} \setminus \{n_1, \dots, n_{k-1}\}$, setting

$$R_j = \sum_{i=1}^{k-1} \lambda_{n_i} e_{n_i} \otimes e_{n_i} + \lambda_j e_j \otimes e_j,$$

we have $R_j \leq T$. Since Ky Fan norms are unitarily invariant, using (iv) of Corollary 2.2, we have $N_k(R_j) \leq N_k(T)$. Therefore $\lambda_j \leq s_k(T)$ and hence $s_k(T) = \sup_{j \notin \{n_1, \dots, n_{k-1}\}} \lambda_j$.

If $s_k(T)$ is a limit point of E, then for every $\epsilon > 0$ and $i \in \mathbb{N}$, there exist distinct positive integers $m_1, \dots, m_{i+1} \in \mathbb{N} \setminus \{n_1, \dots, n_{k-1}\}$ such that

$$s_k(T) - \frac{\epsilon}{i+1} < \lambda_{m_j} \le s_k(T), \ (1 \le j \le i+1).$$

Setting

$$S = \sum_{i=1}^{i+1} \lambda_{m_j} e_{m_j} \otimes e_{m_j} + \sum_{i=1}^{k-1} \lambda_{n_j} e_{n_j} \otimes e_{n_j},$$

we have $0 \le S \le T$ and so $N_{k+i}(S) \le N_{k+i}(T)$. This implies that

$$\sum_{j=1}^{i+1} (s_k(T) - \frac{\epsilon}{i+1}) \leq s_k(T) + \dots + s_{k+i}(T)$$

$$\leq \underbrace{s_k(T) + \dots + s_k(T)}_{i \text{ times}} + s_{k+i}(T).$$

Therefore $s_k(T) - \epsilon \leq s_{k+i}(T)$ and so $s_k(T) \leq s_{k+i}(T)$. Hence, $s_k(T) = s_{k+i}(T)$. (iii) By (i) we have $s_1(T) = \sup_{j \in \mathbb{N}} \lambda_j$. If $s_1(T)$ is a limit point of E, then by the second part of (ii), we have $s_1(T) = s_2(T) = \cdots$. Otherwise there is $n_1 \in \mathbb{N}$ such that $s_1(T) = \lambda_{n_1}$ and by the first part of (ii) we have $s_2(T) = \sup_{j \notin \{n_1\}} \lambda_j$. Now if $s_2(T)$ is a limit point of E, then again by the second part of (ii), we have $s_2(T) = s_3(T) = \cdots$. Otherwise there is $n_2 \in \mathbb{N} - \{n_1\}$ such that $s_2(T) = \lambda_{n_2}$ and by the first part of (ii), we have $s_3(T) = \sup_{j \notin \{n_1, n_2\}} \lambda_j$. Continuing this process we get desired results.

In particular, the following corollary follows from the previous lemma.

Corollary 2.7. Suppose $\{e_i\}_{i=1}^{\infty}$ is an orthonormal sequence in \mathcal{H} . For positive diagonal operator $T = \sum_{i=1}^{\infty} \lambda_i e_i \otimes e_i$, let $s = \inf\{s_i(T) \mid i \in \mathbb{N}\}$, $E = \{\lambda_i \mid i = 1, 2, \cdots\}$. Then

- (i) for every $\epsilon > 0$, there exist distinct positive integers n_1, n_2, \cdots such that $0 \leq s_i(T) < \lambda_{n_i} + \epsilon$.
- (ii) for every $\epsilon > 0$, $A = \{i \mid \lambda_i > s + \epsilon\}$ is a finite set. In fact, A is empty or there exist distinct positive integers n_1, \dots, n_{N_0} , such that $A = \{n_i : 1 \leq i \leq N_0\}$ and $\lambda_{n_i} = s_i(T)$ $(1 \leq i \leq N_0)$.

Lemma 2.8. Suppose $\{e_i\}_{i=1}^{\infty}$ is an orthonormal sequence in \mathcal{H} and $T = \sum_{i=1}^{\infty} \lambda_i e_i \otimes e_i \ (\lambda_i \geq 0)$ is a positive diagonal operator in $\mathbb{B}(\mathcal{H})$. Then

(i) for every $\epsilon > 0$ there exists a unitary element $U \in \mathbb{B}(\mathcal{H})$ such that

$$UTU^* \le \sum_{i=1}^{\infty} (s_i(T) + \epsilon)e_i \otimes e_i,$$

(ii) for every $\epsilon > 0$ there exists a partial isometry $U \in \mathbb{B}(\mathcal{H})$ such that

$$\sum_{i=1}^{\infty} (s_i(T) - \epsilon)e_i \otimes e_i \leq UTU^*,$$

(iii)
$$||T|| = ||\sum_{i=1}^{\infty} s_i(T)e_i \otimes e_i||$$
.

Proof. Let $\epsilon > 0$, $s = \inf\{s_i(T) \mid i \in \mathbb{N}\}$ and $A = \{i \mid \lambda_i > s + \epsilon\}$. The previous corollary implies that A is empty or there exist distinct positive integers n_1, \dots, n_{N_0} , such that $A = \{n_i : 1 \leq i \leq N_0\}$ and $\lambda_{n_i} = s_i(T)$ $(1 \leq i \leq N_0)$.

If A is empty, we set U = I, otherwise we consider U as a unitary operator that maps $\{e_n\}_{n=1}^{\infty}$ onto $\{e_n\}_{n=1}^{\infty}$ and $U(e_{n_i}) = e_i$ for $i = 1, \dots, N_0$. Therefore

$$UTU^* = \sum_{i=1}^{N_0} s_i(T)e_i \otimes e_i + \sum_{i=N_0+1}^{\infty} \mu_i e_i \otimes e_i,$$

where $\mu_i \in \{\lambda_j : j \neq n_i, \text{ for all } 1 \leq i \leq N_0\}$. Since for all $i \geq N_0$ we have $\mu_i \leq s + \epsilon$, then $UTU^* \leq \sum_{i=1}^{\infty} (s_i(T) + \epsilon) e_i \otimes e_i$.

For proving (ii), we recall that there exist distinct positive integers n_1, n_2, \cdots such that $0 \le s_i(T) < \lambda_{n_i} + \epsilon$. Now consider a partial isometry U which satisfies

$$U(e_j) = \begin{cases} e_i & j = n_i, \text{ for some } i \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

We have

$$UTU^* = \sum_{i=1}^{\infty} \lambda_{n_i} e_i \otimes e_i$$
$$\geq \sum_{i=1}^{\infty} (s_i(T) - \epsilon) e_i \otimes e_i.$$

Finally (iii) follows from (i),(ii) and (iv) of Corollary 2.2.

Lemma 2.9. Let \mathcal{H} be a separable Hilbert space and T be a positive operator in $\mathbb{B}(\mathcal{H})$. For every $\epsilon > 0$, there exists a diagonal operator T_{ϵ} such that

$$|s_i(T) - s_i(T_{\epsilon})| < \epsilon$$
, for all $i \in \mathbb{N}$.

Proof. By [11] there exist a diagonal operator T_{ϵ} and a compact operator K_{ϵ} such that $T = T_{\epsilon} + K_{\epsilon}$ and the Hilbert-Schmidt norm of K_{ϵ} is less than ϵ . Hence for every finite rank operator F, the following inequalities hold

$$||T_{\epsilon} - F||_{\text{op}} - \epsilon \le ||T - F||_{\text{op}} \le ||T_{\epsilon} - F||_{\text{op}} + \epsilon.$$

Taking infimum over F with rank(F) < i, we get the desired result. \square

Theorem 2.10. Let \mathcal{H} be a separable Hilbert space and $T \in \mathbb{B}(\mathcal{H})$. The equality $||T|| = ||\sum_{i=1}^{\infty} s_i(T)e_i \otimes e_i||$ holds, for all orthonormal sequence $\{e_i\}_{i \in \mathbb{N}}$ in \mathcal{H} .

Proof. Since ||T|| = ||T||| and $s_i(T) = s_i(|T|)$, we can suppose that T is a positive operator. Let $\epsilon > 0$ and $T_{\epsilon} = \sum_{i=1}^{\infty} \lambda_i e_i \otimes e_i$ be the diagonal operator of the previous lemma. We have by Lemmas 2.1 and 2.8

$$||T|| \leq ||T_{\epsilon}|| + ||K_{\epsilon}|| \leq ||T_{\epsilon}|| + ||I|| ||K_{\epsilon}||_{\text{op}}$$

$$\leq \left\| \sum_{i=1}^{\infty} s_i(T_{\epsilon})e_i \otimes e_i \right\| + \epsilon ||I||$$

$$\leq \left\| \sum_{i=1}^{\infty} s_i(T)e_i \otimes e_i \right\| + 2\epsilon ||I||.$$

Similarly We have

$$\left\| \sum_{i=1}^{\infty} s_i(T) e_i \otimes e_i \right\| \leq \left\| \sum_{i=1}^{\infty} s_i(T_{\epsilon}) e_i \otimes e_i \right\| + \epsilon \|I\|$$

$$= \|T_{\epsilon}\| + \epsilon \|I\|$$

$$\leq \|T\| + 2\epsilon \|I\|.$$

Lemma 2.11. Suppose $\{e_i\}_{i\in\mathbb{N}}$ is an orthonormal sequence in \mathcal{H} and $D_1 = \sum_{i=1}^{\infty} \lambda_i e_i \otimes e_i$, $D_2 = \sum_{i=1}^{\infty} \mu_i e_i \otimes e_i$ ($\lambda_i, \mu_i \geq 0$), are positive diagonal operators in $\mathbb{B}(\mathcal{H})$. Assume moreover that there exists $N \in \mathbb{N}$ such that $\lambda_k = \mu_k$ for all k > N and $s_k(D_1) = \lambda_k$, $s_k(D_2) = \mu_k$ for all $1 \leq k \leq N$. If $N_k(D_1) \leq N_k(D_2)$ for all $1 \leq k \leq N$, then $||D_1|| \leq ||D_2||$.

Proof. Let $X_1 = \sum_{i=1}^N \lambda_i e_i \otimes e_i$ and $X_2 = \sum_{i=1}^N \mu_i e_i \otimes e_i$. We have $\sum_{i=1}^k \lambda_i \leq \sum_{i=1}^k \mu_i$, for every $1 \leq k \leq N$ and so, there are unitary matrices $U_1, \dots, U_{2^N N!}$ in $M_N(\mathbb{C})$ and non-negative numbers $c_1, \dots, c_{2^N N!}$ such that $X_1 = \sum_{j=1}^{2^N N!} c_j U_j X_2 U_j^*$ and $\sum_{j=1}^{2^N N!} c_j = 1$ [2, II.2.10]. Now, we can choose unitary operators $\tilde{U}_1, \dots, \tilde{U}_{2^N N!}$ in $\mathbb{B}(\mathcal{H})$ such that

$$\sum_{i=1}^{N} \lambda_i e_i \otimes e_i = \sum_{j=1}^{2^N N!} c_j \tilde{U}_j \left(\sum_{i=1}^{N} \mu_i e_i \otimes e_i \right) \tilde{U}_j^*,$$

and $\tilde{U}_j(e_i) = e_i$, for every $1 \leq j \leq 2^N N!$ and i > N. A direct computation shows that $D_1 = \sum_{j=1}^{2^N N!} c_j \tilde{U}_j D_2 \tilde{U}_j^*$, and so $||D_1|| \leq ||D_2||$.

Now, we can show that Ky Fan's dominance theorem is valid on $\mathbb{B}(\mathcal{H})$, where \mathcal{H} is a separable Hilbert space.

Theorem 2.12. Let \mathcal{H} be a separable Hilbert space and $T, R \in \mathbb{B}(\mathcal{H})$. If $N_k(T) \leq N_k(R)$ for all $k \in \mathbb{N}$, then $||T|| \leq ||R||$.

Proof. For every $\epsilon > 0$, we can choose $N \in \mathbb{N}$ such that: i) $s_N(T) \leq s_N(R) + \epsilon$,

ii) $s_N(R) \le s_i(R) + \epsilon$, for every $i \ge N$.

Using (iv) of Corollary 2.2 and Lemma 2.10 together with Lemma 2.11, we have

$$||T|| = \left\| \sum_{i=1}^{\infty} s_i(T)e_i \otimes e_i \right\|$$

$$\leq \left\| \sum_{i=1}^{N} s_i(T)e_i \otimes e_i + \sum_{i=N+1}^{\infty} s_N(T)e_i \otimes e_i \right\|$$

$$\leq \left\| \sum_{i=1}^{N} s_i(R)e_i \otimes e_i + \sum_{i=N+1}^{\infty} s_N(T)e_i \otimes e_i \right\|$$

$$\leq \left\| \sum_{i=1}^{N} s_i(R)e_i \otimes e_i + \sum_{i=N+1}^{\infty} (s_N(R) + \epsilon)e_i \otimes e_i \right\|$$

$$\leq \left\| \sum_{i=1}^{N} s_i(R)e_i \otimes e_i + \sum_{i=N+1}^{\infty} (s_i(R) + 2\epsilon)e_i \otimes e_i \right\|$$

$$\leq \left\| \sum_{i=1}^{\infty} s_i(R)e_i \otimes e_i + \sum_{i=N+1}^{\infty} (s_i(R) + 2\epsilon)e_i \otimes e_i \right\|$$

$$\leq \left\| \sum_{i=1}^{\infty} s_i(R)e_i \otimes e_i + \sum_{i=N+1}^{\infty} (s_i(R) + 2\epsilon)e_i \otimes e_i \right\|$$

Acknowledgment. The research of the second author was in part supported by a grant from IPM (No. 90470123).

REFERENCES

- 1. J. Alaminos, J. Extremera and A.R. Villena, *Uniqueness of rotation invariant norms*, Banach J. Math. Anal. **3** (2009), no. 1, 85–98.
- 2. R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
- 3. J.T. Chan, C.K. Li and C.N. Tu, A class of unitarily invariant norms on $\mathbb{B}(\mathcal{H})$, Proc. Amer. Math. Soc. **129** (2000), no. 4, 1065–1076.
- 4. J. Fang, D. Hadwin, E. Nordgren and J. Shen, Tracial gauge norms on finite von Neumann algebras satisfying the weak Dixmier property, J. Funct. Anal. 255 (2008), no. 1, 142–183.
- 5. I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Transl. Math. Monog., 18, Amer. Math. Soc., Provid., 1969.
- 6. P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, Berlin, 1982.
- R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
- 8. R.V. Kadison and G.K. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), no. 2, 249–266.
- 9. C.K. Li, Some aspects of the theory of norms, Linear Algebra Appl. 219 (1995), 93-110.
- 10. M. S. Moslehian, *Ky Fan inequalities*, Linear Multilinear Algebra (to appear), Available online at http://arxiv.org/abs/1108.1467.
- 11. D. Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators, J. Operator Theory 2 (1979), 3–37.
- 12. J. Von Neumann, Some matrix-inequalities and metrization of matrix-space, Tomsk. Univ. Rev. 1 (1937), 286–300.

 1 Department of Mathematics, Shahed University, P.O. Box 18151-159, Tehran, Iran.

E-mail address: alizadeh@shahed.ac.ir

 2 School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Avenue, Tehran, Iran; School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box: 19395-5746, Tehran, Iran.

E-mail address: mb.asadi@khayam.ut.ac.ir