Open Access
April 2018 Norm convergence of logarithmic means on unbounded Vilenkin groups
György Gát, Ushangi Goginava
Banach J. Math. Anal. 12(2): 422-438 (April 2018). DOI: 10.1215/17358787-2017-0031
Abstract

In this paper we prove that, in the case of some unbounded Vilenkin groups, the Riesz logarithmic means converges in the norm of the spaces X(G) for every fX(G), where by X(G) we denote either the class of continuous functions with supremum norm or the class of integrable functions.

References

1.

[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, and A. I. Rubinshteĭn, Multiplicative Systems of Functions and Harmonic Analysis on Zero-dimensional Groups, Ehlm, Baku, 1981.[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, and A. I. Rubinshteĭn, Multiplicative Systems of Functions and Harmonic Analysis on Zero-dimensional Groups, Ehlm, Baku, 1981.

2.

[2] M. Avdispahić, Concepts of generalized bounded variation and the theory of Fourier series, Int. J. Math. Math. Sci. 9 (1986), no. 2, 223–244. 0595.42012 10.1155/S0161171286000285[2] M. Avdispahić, Concepts of generalized bounded variation and the theory of Fourier series, Int. J. Math. Math. Sci. 9 (1986), no. 2, 223–244. 0595.42012 10.1155/S0161171286000285

3.

[3] M. Avdispahić and N. Memić, On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups, Acta Math. Hungar. 129 (2010), no. 4, 381–392. 1274.43006 10.1007/s10474-010-0023-9[3] M. Avdispahić and N. Memić, On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups, Acta Math. Hungar. 129 (2010), no. 4, 381–392. 1274.43006 10.1007/s10474-010-0023-9

4.

[4] M. Avdispahić and M. Pepić, On summability in $L_{p}$-norm on general Vilenkin groups, Taiwanese J. Math. 4 (2000), no. 2, 285–296.[4] M. Avdispahić and M. Pepić, On summability in $L_{p}$-norm on general Vilenkin groups, Taiwanese J. Math. 4 (2000), no. 2, 285–296.

5.

[5] M. Avdispahić and M. Pepić, Summability and integrability of Vilenkin series, Collect. Math. 51 (2000), no. 3, 237–254.[5] M. Avdispahić and M. Pepić, Summability and integrability of Vilenkin series, Collect. Math. 51 (2000), no. 3, 237–254.

6.

[6] I. Blahota and G. Gát, Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups, Anal. Theory Appl. 24 (2008), no. 1, 1–17.[6] I. Blahota and G. Gát, Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups, Anal. Theory Appl. 24 (2008), no. 1, 1–17.

7.

[7] A. V. Efimov, On certain approximation properties of periodic multiplicative orthonormal systems, Mat. Sb. (N.S.) 69 (1966), 354–370.[7] A. V. Efimov, On certain approximation properties of periodic multiplicative orthonormal systems, Mat. Sb. (N.S.) 69 (1966), 354–370.

8.

[8] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414. 0036.03604 10.1090/S0002-9947-1949-0032833-2[8] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414. 0036.03604 10.1090/S0002-9947-1949-0032833-2

9.

[9] G. Gát, Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory 124 (2003), no. 1, 25–43.[9] G. Gát, Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory 124 (2003), no. 1, 25–43.

10.

[10] G. Gát and U. Goginava, Uniform and $L$-convergence of logarithmic means of Walsh-Fourier series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 2, 497–506.[10] G. Gát and U. Goginava, Uniform and $L$-convergence of logarithmic means of Walsh-Fourier series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 2, 497–506.

11.

[11] U. Goginava, On the uniform convergence of Walsh-Fourier series, Acta Math. Hungar. 93 (2001), no. 1–2, 59–70. 0992.42012 10.1023/A:1013865315680[11] U. Goginava, On the uniform convergence of Walsh-Fourier series, Acta Math. Hungar. 93 (2001), no. 1–2, 59–70. 0992.42012 10.1023/A:1013865315680

12.

[12] U. Goginava, Uniform convergence of Cesàro means of negative order of double Walsh-Fourier series, J. Approx. Theory 124 (2003), no. 1, 96–108. 1029.42022 10.1016/S0021-9045(03)00134-5[12] U. Goginava, Uniform convergence of Cesàro means of negative order of double Walsh-Fourier series, J. Approx. Theory 124 (2003), no. 1, 96–108. 1029.42022 10.1016/S0021-9045(03)00134-5

13.

[13] J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 1–2, 155–164. 0345.42011 10.1007/BF01896477[13] J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 1–2, 155–164. 0345.42011 10.1007/BF01896477

14.

[14] J. Price, Certain groups of orthonormal step functions, Canad. J. Math. 9 (1957), 413–425. 0079.09204 10.4153/CJM-1957-049-x[14] J. Price, Certain groups of orthonormal step functions, Canad. J. Math. 9 (1957), 413–425. 0079.09204 10.4153/CJM-1957-049-x

15.

[15] M. Riesz, Sur un théorème de la moyenne et ses applications, Acta Litt. ac Scient. Univ. Hung. 1 (1923), 114–126. Acta. Sci. Math. (Szeged), 1 (1922), 114-126.[15] M. Riesz, Sur un théorème de la moyenne et ses applications, Acta Litt. ac Scient. Univ. Hung. 1 (1923), 114–126. Acta. Sci. Math. (Szeged), 1 (1922), 114-126.

16.

[16] F. Schipp, On $L_{p}$-norm convergence of series with respect to product systems, Anal. Math. 2 (1976), no. 1, 49–64. MR0428430 10.1007/BF02079907[16] F. Schipp, On $L_{p}$-norm convergence of series with respect to product systems, Anal. Math. 2 (1976), no. 1, 49–64. MR0428430 10.1007/BF02079907

17.

[17] F. Schipp, W. R. Wade, P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. 0727.42017[17] F. Schipp, W. R. Wade, P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. 0727.42017

18.

[18] P. Simon, Verallgemeinerte Walsh-Fourierreihen, II. Acta Math. Acad. Sci. Hungar. 27 (1976), no. 3–4, 329–341.[18] P. Simon, Verallgemeinerte Walsh-Fourierreihen, II. Acta Math. Acad. Sci. Hungar. 27 (1976), no. 3–4, 329–341.

19.

[19] O. Szász, On the logarithmic means of rearranged partial sums of Fourier series, Bull. Amer. Math. Soc. 48 (1942), 705–711.[19] O. Szász, On the logarithmic means of rearranged partial sums of Fourier series, Bull. Amer. Math. Soc. 48 (1942), 705–711.

20.

[20] F. T. Wang, On the summability of Fourier series by Riesz’s logarithmic means, II, Tohoku Math. J. 40 (1935), 392–397.[20] F. T. Wang, On the summability of Fourier series by Riesz’s logarithmic means, II, Tohoku Math. J. 40 (1935), 392–397.

21.

[21] K. Yabuta, Quasi-Tauberian theorems, applied to the summability of Fourier series by Riesz’s logarithmic means, Tohoku Math. J. (2) 22 (1970), 117–129.[21] K. Yabuta, Quasi-Tauberian theorems, applied to the summability of Fourier series by Riesz’s logarithmic means, Tohoku Math. J. (2) 22 (1970), 117–129.

22.

[22] W.-S. Young, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc. 218 (1976), 311–320. 0327.43009 10.1090/S0002-9947-1976-0394022-8[22] W.-S. Young, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc. 218 (1976), 311–320. 0327.43009 10.1090/S0002-9947-1976-0394022-8
Copyright © 2018 Tusi Mathematical Research Group
György Gát and Ushangi Goginava "Norm convergence of logarithmic means on unbounded Vilenkin groups," Banach Journal of Mathematical Analysis 12(2), 422-438, (April 2018). https://doi.org/10.1215/17358787-2017-0031
Received: 28 March 2017; Accepted: 17 July 2017; Published: April 2018
Vol.12 • No. 2 • April 2018
Back to Top