Open Access
January 2018 Vector lattices and f-algebras: The classical inequalities
G. Buskes, C. Schwanke
Banach J. Math. Anal. 12(1): 191-205 (January 2018). DOI: 10.1215/17358787-2017-0045
Abstract

We present some of the classical inequalities in analysis in the context of Archimedean (real or complex) vector lattices and f-algebras. In particular, we prove an identity for sesquilinear maps from the Cartesian square of a vector space to a geometric mean closed Archimedean vector lattice, from which a Cauchy–Schwarz inequality follows. A reformulation of this result for sesquilinear maps with a geometric mean closed semiprime Archimedean f-algebra as codomain is also given. In addition, a sufficient and necessary condition for equality is presented. We also prove a Hölder inequality for weighted geometric mean closed Archimedean Φ-algebras, substantially improving results by K. Boulabiar and M. A. Toumi. As a consequence, a Minkowski inequality for weighted geometric mean closed Archimedean Φ-algebras is obtained.

References

1.

[1] C. D. Aliprantis and O. Burkinshaw,Positive Operators, Pure Appl. Math.119, Academic Press, Orlando, FL, 1985.[1] C. D. Aliprantis and O. Burkinshaw,Positive Operators, Pure Appl. Math.119, Academic Press, Orlando, FL, 1985.

2.

[2] Y. Azouzi,Square mean closed real Riesz spaces, Ph.D. dissertation, University of Tunis, Tunisia, 2008.[2] Y. Azouzi,Square mean closed real Riesz spaces, Ph.D. dissertation, University of Tunis, Tunisia, 2008.

3.

[3] Y. Azzouzi, K. Boulabiar, and G. Buskes,The de Schipper formula and squares of Riesz spaces, Indag. Math. (N.S.)17(2006), no. 4, 479–496. 1131.46003 10.1016/S0019-3577(07)00003-1[3] Y. Azzouzi, K. Boulabiar, and G. Buskes,The de Schipper formula and squares of Riesz spaces, Indag. Math. (N.S.)17(2006), no. 4, 479–496. 1131.46003 10.1016/S0019-3577(07)00003-1

4.

[4] S. J. Bernau and C. B. Huijsmans,Almost $f$-algebras and $d$-algebras, Math. Proc. Cambridge Philos. Soc.107(1990), no. 2, 287–308.[4] S. J. Bernau and C. B. Huijsmans,Almost $f$-algebras and $d$-algebras, Math. Proc. Cambridge Philos. Soc.107(1990), no. 2, 287–308.

5.

[5] S. J. Bernau and C. B. Huijsmans,The Schwarz inequality in Archimedean $f$-algebras, Indag. Math. (N.S.)7(1996), no. 2, 137–148.[5] S. J. Bernau and C. B. Huijsmans,The Schwarz inequality in Archimedean $f$-algebras, Indag. Math. (N.S.)7(1996), no. 2, 137–148.

6.

[6] F. Beukers and C. B. Huijsmans,Calculus in $f$-algebras, J. Aust. Math. Soc. Ser. A37(1984), no. 1, 110–116.[6] F. Beukers and C. B. Huijsmans,Calculus in $f$-algebras, J. Aust. Math. Soc. Ser. A37(1984), no. 1, 110–116.

7.

[7] F. Beukers, C. B. Huijsmans, and B. de Pagter,Unital embedding and complexification of $f$-algebras, Math Z.183(1983), no. 1, 131–144.[7] F. Beukers, C. B. Huijsmans, and B. de Pagter,Unital embedding and complexification of $f$-algebras, Math Z.183(1983), no. 1, 131–144.

8.

[8] K. Boulabiar,A Hölder-type inequality for positive functionals on $\Phi$-algebras, J. Inequal. Pure Appl. Math.3(2002), no. 5, art. ID rnm74.[8] K. Boulabiar,A Hölder-type inequality for positive functionals on $\Phi$-algebras, J. Inequal. Pure Appl. Math.3(2002), no. 5, art. ID rnm74.

9.

[9] K. Boulabiar and G. Buskes,Vector lattice powers: $f$-algebras and functional calculus, Comm. Algebra34(2006), no. 4, 1435–1442.[9] K. Boulabiar and G. Buskes,Vector lattice powers: $f$-algebras and functional calculus, Comm. Algebra34(2006), no. 4, 1435–1442.

10.

[10] G. Buskes, B. de Pagter, and A. van Rooij,Functional calculus on Riesz spaces, Indag. Math. (N.S.)2(1991), no. 4, 423–436. 0781.46008 10.1016/0019-3577(91)90028-6[10] G. Buskes, B. de Pagter, and A. van Rooij,Functional calculus on Riesz spaces, Indag. Math. (N.S.)2(1991), no. 4, 423–436. 0781.46008 10.1016/0019-3577(91)90028-6

11.

[11] G. Buskes and C. Schwanke,Complex vector lattices via functional completions, J. Math. Anal. Appl.434(2016), no. 2, 1762–1778. MR3415750 1351.46005 10.1016/j.jmaa.2015.09.080[11] G. Buskes and C. Schwanke,Complex vector lattices via functional completions, J. Math. Anal. Appl.434(2016), no. 2, 1762–1778. MR3415750 1351.46005 10.1016/j.jmaa.2015.09.080

12.

[12] G. Buskes and C. Schwanke,Functional completions of Archimedean vector lattices, Algebra Universalis76(2016), no. 1, 53–69.[12] G. Buskes and C. Schwanke,Functional completions of Archimedean vector lattices, Algebra Universalis76(2016), no. 1, 53–69.

13.

[13] G. Buskes and A. van Rooij,Almost $f$-algebras: Commutativity and the Cauchy-Schwarz inequality, Positivity4(2000), no. 3, 227–231.[13] G. Buskes and A. van Rooij,Almost $f$-algebras: Commutativity and the Cauchy-Schwarz inequality, Positivity4(2000), no. 3, 227–231.

14.

[14] G. Buskes and A. van Rooij,Squares of Riesz spaces, Rocky Mountain J. Math.31(2001), no. 1, 45–56.[14] G. Buskes and A. van Rooij,Squares of Riesz spaces, Rocky Mountain J. Math.31(2001), no. 1, 45–56.

15.

[15] J. B. Conway,A Course in Functional Analysis, 2nd ed., Grad. Texts in Math.96, Springer, New York, 1990. 0706.46003[15] J. B. Conway,A Course in Functional Analysis, 2nd ed., Grad. Texts in Math.96, Springer, New York, 1990. 0706.46003

16.

[16] B. de Pagter,$f$-algebras and orthomorphisms, Ph.D. dissertation, Leiden University, Leiden, the Netherlands, 1981.[16] B. de Pagter,$f$-algebras and orthomorphisms, Ph.D. dissertation, Leiden University, Leiden, the Netherlands, 1981.

17.

[17] W. J. de Schipper,A note on the modulus of an order bounded linear operator between complex vector lattices, Indag. Math. (N.S.)35(1973), 355–367. 0268.47041[17] W. J. de Schipper,A note on the modulus of an order bounded linear operator between complex vector lattices, Indag. Math. (N.S.)35(1973), 355–367. 0268.47041

18.

[18] A. G. Kusraev,Hölder type inequalities for orthosymmetric bilinear operators, Vladikavkaz. Mat. Zh.9(2007), no. 3, 36–46. 1324.47035[18] A. G. Kusraev,Hölder type inequalities for orthosymmetric bilinear operators, Vladikavkaz. Mat. Zh.9(2007), no. 3, 36–46. 1324.47035

19.

[19] W. A. J. Luxemburg and A. C. Zaanen,Riesz Spaces, I, North-Holland, Amsterdam, 1971.[19] W. A. J. Luxemburg and A. C. Zaanen,Riesz Spaces, I, North-Holland, Amsterdam, 1971.

20.

[20] L. Maligranda,A simple proof of the Hölder and the Minkowski inequality, Amer. Math. Monthly102(1995), no. 3, 256–259. 0848.26009 10.2307/2975013[20] L. Maligranda,A simple proof of the Hölder and the Minkowski inequality, Amer. Math. Monthly102(1995), no. 3, 256–259. 0848.26009 10.2307/2975013

21.

[21] G. Mittelmeyer and M. Wolff,Über den Absolutbetrag auf komplexen Vektorverbänden, Math. Z.137(1974), 87–92.[21] G. Mittelmeyer and M. Wolff,Über den Absolutbetrag auf komplexen Vektorverbänden, Math. Z.137(1974), 87–92.

22.

[22] M. A. Toumi,Exponents in $\mathbb{R}$ of elements in a uniformly complete $\Phi$-algebra, Rend. Istit. Mat. Univ. Trieste40(2008), 29–44.[22] M. A. Toumi,Exponents in $\mathbb{R}$ of elements in a uniformly complete $\Phi$-algebra, Rend. Istit. Mat. Univ. Trieste40(2008), 29–44.

23.

[23] A. C. Zaanen,Riesz Spaces, II, North-Holland Math. Library30, North-Holland, Amsterdam, 1983.[23] A. C. Zaanen,Riesz Spaces, II, North-Holland Math. Library30, North-Holland, Amsterdam, 1983.
Copyright © 2018 Tusi Mathematical Research Group
G. Buskes and C. Schwanke "Vector lattices and f-algebras: The classical inequalities," Banach Journal of Mathematical Analysis 12(1), 191-205, (January 2018). https://doi.org/10.1215/17358787-2017-0045
Received: 9 February 2017; Accepted: 27 March 2017; Published: January 2018
Vol.12 • No. 1 • January 2018
Back to Top