Open Access
Translator Disclaimer
September 2012 Simple Elliptic Singularities: A Note on their G-function
Ian A. B. Strachan
Asian J. Math. 16(3): 409-426 (September 2012).


The link between Frobenius manifolds and singularity theory is well known, with the simplest examples coming from the simple hypersurface singularities. Associated with any such manifold is a function known as the $G$-function. This plays a role in the construction of higher-genus terms in various theories. For the simple singularities the $G$-function is known explicitly: $G = 0$ . The next class of singularities, the unimodal hypersurface or elliptic hypersurface singularities consists of three examples, $\tilde{E}_6 , \tilde{E}_7 , \tilde{E}_8$ (or equivalently $P_8 ,X_9 , J_10$). Using a result of Noumi and Yamada on the flat structure on the space of versal deformations of these singularities the $G$-function is explicitly constructed for these three examples. The main property is that the function depends on only one variable, the marginal (dimensionless) deformation variable. Other examples are given based on the foldings of known Frobenius manifolds. Properties of the $G$-function under the action of the modular group is studied, and applications within the theory of integrable systems are discussed.


Download Citation

Ian A. B. Strachan. "Simple Elliptic Singularities: A Note on their G-function." Asian J. Math. 16 (3) 409 - 426, September 2012.


Published: September 2012
First available in Project Euclid: 23 November 2012

zbMATH: 1256.53056
MathSciNet: MR2989227

Primary: 53B25 , 53B50

Keywords: Frobenius manifolds , G-functions , hypersurface singularities

Rights: Copyright © 2012 International Press of Boston


Vol.16 • No. 3 • September 2012
Back to Top