Open Access
April 2022 Multiple solutions for two classes of quasilinear problems defined on a nonreflexive Orlicz–Sobolev space
Claudianor O. Alves, Sabri Bahrouni, Marcos L. M. Carvalho
Author Affiliations +
Ark. Mat. 60(1): 1-22 (April 2022). DOI: 10.4310/ARKIV.2022.v60.n1.a1

Abstract

In this paper we prove the existence and multiplicity of solutions for a large class of quasilinear problems on a nonreflexive Orlicz–Sobolev space. Here, we use the variational methods developed by Szulkin [34] combined with some properties of the weak* topology.

Citation

Download Citation

Claudianor O. Alves. Sabri Bahrouni. Marcos L. M. Carvalho. "Multiple solutions for two classes of quasilinear problems defined on a nonreflexive Orlicz–Sobolev space." Ark. Mat. 60 (1) 1 - 22, April 2022. https://doi.org/10.4310/ARKIV.2022.v60.n1.a1

Information

Received: 4 June 2021; Accepted: 29 October 2021; Published: April 2022
First available in Project Euclid: 17 July 2024

Digital Object Identifier: 10.4310/ARKIV.2022.v60.n1.a1

Subjects:
Primary: 35A15 , 35J62 , 46E30

Keywords: $\Delta_2$-condition , modular , Orlicz–Sobolev spaces , quasilinear elliptic problems , variational methods

Rights: Copyright © 2022 Institut Mittag-Leffler

Vol.60 • No. 1 • April 2022
Back to Top