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Multiple solutions for two classes of quasilinear
problems defined on a nonreflexive

Orlicz-Sobolev space

Claudianor O. Alves, Sabri Bahrouni and Marcos L. M. Carvalho

Abstract. In this paper we prove the existence and multiplicity of solutions for a large
class of quasilinear problems on a nonreflexive Orlicz-Sobolev space. Here, we use the variational
methods developed by Szulkin [34] combined with some properties of the weak∗ topology.

1. Introduction

This paper concerns the existence and multiplicity of weak solutions for a class
of quasilinear elliptic problem of the type

(P )
{
−ΔΦu=λf(x, u), in Ω,

u=0, on ∂Ω,

where Ω⊂R
N is a smooth bounded domain, N≥1, λ is a positive parameter and

f :Ω×R→R is a Carathéodory function verifying some conditions that will be men-
tioned later on. It is important to recall that

ΔΦu=div(φ(|∇u|)∇u),

where Φ:R→R is a N-function of the form

Φ(t)=
∫ |t|

0
sφ(s) ds
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and φ:(0,+∞)→(0,+∞) is a C1 function verifying some technical assumptions.
We would like to point out that this type of operator appears in a lot of physical

applications, such as: Nonlinear Elasticity, Plasticity, Generalized Newtonian Fluid,
Non-Newtonian Fluid and Plasma Physics. For more details about the physical
applications we cite [14], [16] and their references.

Motivated by above applications, many authors have studied problems involv-
ing quasilinear problem driven by a N-function Φ, we would like to cite Bonanno,
Bisci and Radulescu [6], [7], Cerny [8], Clément, Garcia-Huidobro and Manásevich
[9], Donaldson [13], Fuchs and Li [18], Fuchs and Osmolovski [19], Fukagai, Ito
and Narukawa [17], Gossez [22], Le and Schmitt [23], Mihailescu and Radulescu
[24], [25], Mihailescu and Repovs [27], Mihailescu, Radulescu and Repovs [28], Mu-
stonen and Tienari [29], Montefusco and Pucci [30], Orlicz [31], Pucci and Temperini
[32] and their references, where quasilinear problems like (P ) have been considered
in bounded and unbounded domains of RN .

In all of these works the so called Δ2-condition has been assumed on Φ and Φ̃,
which ensures that the Orlicz-Sobolev space W 1,Φ(Ω) is a reflexive Banach space.
This assertion is used several times in order to get a nontrivial solution for ellip-
tic problems taking into account the weak topology and the classical variational
methods to C1 functionals.

In recent years many researchers have studied the nonreflexive case, which
is more subtle from a mathematical point of view, because in general the energy
functional associated with these problems are in general only continuous and the
classical variational methods to C1 functional cannot be used. For example, in
[20], García-Huidobro, Khoi, Manásevich and Schmitt considered the existence of
solution for the following nonlinear eigenvalue problem

(1.1)
{
−ΔΦu=λΨ(u), in Ω
u=0, on ∂Ω,

where Ω is a bounded domain, Φ:R→R is a N-function and Ψ:R→R is a continuous
function verifying some others technical conditions. In that paper, the authors
studied the case where Φ does not satisfy the well known Δ2-condition. More
precisely, in the first part of that paper the authors considered the function

(1.2) Φ(t)= (et
2−1)/2, ∀t∈R.

More recently, Bocea and Mihăilescu [5] made a careful study about the eigenvalues
of the problem

(1.3)
{
−div(e|∇u|2∇u)−Δu=λu, in Ω
u=0, on ∂Ω.
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After that, Silva, Gonçalves and Silva [10] considered existence of multiple
solutions for a class of problem like (1.1). In that paper the Δ2-condition is not also
assumed and the main tool used was the truncation of the nonlinearity together with
a minimization procedure for the energy functional associated to the quasilinear
elliptic problem (1.1).

In [11], Silva, Carvalho, Silva and Gonçalves studied a class of problem (1.1)
where the energy functional satisfies the mountain pass geometry and the N-function
Φ̃ does not satisfies the Δ2-condition and has a polynomial growth. Still related
to the mountain pass geometry, in [3], Alves, Silva and Pimenta also considered
the problem (1.1) for a large class of function Ψ, but supposing that Φ has an
exponential growth like (1.2).

Motivated by above study involving nonreflexive Banach spaces, we intend to
consider two new classes of problem (P ) where W 1,Φ

0 (Ω) can be nonreflexive. The
plan of the paper is as follows: In Section 2 we done a review about the main
properties involving the Orlicz-Sobolev spaces that will be used in our approach. In
Section 3 we consider our first class of problem assuming the following conditions:

(φ1) t �−→ tφ(t); t> 0 increasing;

(φ2) lim
t→0

tφ(t)= 0, lim
t→+∞

tφ(t)=+∞.

(φ3) t �−→ t2φ(t) is convex and t2φ(t)
Φ(t) ≥ l > 1, ∀t> 0.

The Carathéodory function f :Ω×R→R satisfies:
(f0) There exist a constant C>0 and a function a:[0,+∞)→(0,+∞) such that

|f(x, t)| ≤C(a(t)t+1), a.e. x∈Ω, t∈ [0,∞),

where

A(t)=
∫ t

0
a(s)sds

is a N-function satisfying 1<mA := sup
t>0

a(t)t2

A(t) < l.

(f1) There exits δ>0 such that t �→F (x, t):=
∫ t

0 f(x, s)ds is decreasing in [0, δ)
a.e. in Ω;

(f2) There exits t1>0 such that

F (x, t1)> 0, a.e. in Ω.
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A model of nonlinearity satisfying (f0)−(f2) is

f(x, t)= tp−1
+ −tq−1

+ , t∈R,

where t+=max{t, 0} and 1<q<p, which was considered in [26]. However, our hy-
pothesis are more general than those in [26], because in our case, Φ does not satisfies
the Δ2-condition and t �→Φ(

√
t) does not need be a convex function. Another model

of nonlinearity satisfying (f0)−(f2), which was not treated in [26], is

f1(x, t)= ptp−1
+ ln(1+t+)− tp

ln(1+t+)−qtq−1
+ , t∈R,

where 1<q<p. Related to the conditions (φ1)−(φ3), it is possible to show that the
functions below satisfy these conditions:

(i) Φ(t)=(1+|t|2)α−1, α∈(1, N
N−2 ),

(ii) Φ(t)=tp ln(1+|t|), 1<−1+
√

1+4N
2 <p<N−1, N≥3,

(iii) Φ(t)=
∫ |t|
0 s1−α(sinh−1 s)βds, 0≤α≤1 and β>0,

(iv) Φ(t)= 1
p |t|p for p>1,

(v) Φ(t)= 1
p |t|p+ 1

q |t|q where 1<p<q<N with q∈(p, p∗),
and
(vi) Φ(t)=(e|t|2−1)/2.
From now on, we say that u∈W 1,Φ

0 (Ω) is a weak solution of (P ) whenever∫
Ω
φ(|∇u|)∇u∇v dx=λ

∫
Ω
f(x, u)v dx, ∀v ∈W 1,Φ

0 (Ω).

Under these assumptions the main result in this section can be stated as follows:

Theorem 1.1. Assume (f0)−(f2) and (φ1)−(φ3). Then there exists λ∗>0
such that problem (P ) has at least two nontrivial weak solutions for all λ>λ∗.

In Section 4, we study a second class of problem, where we require the following
structural assumptions on φ,Φ and f :

(φ4) 0≤�−1=inft>0
(tφ(t))′
φ(t) ≤ (tφ(t))′

φ(t) ≤m−1, t>0
(f3) There exist C>0 and 0<α<1 such that

f(x, 0)∈L∞(Ω) and |F (x, t)| ≤CΦ(t)α, t∈R\{0}.

The condition (φ4) does not guarantee that W 1,Φ
0 (Ω) is reflexive, because it per-

mits to work with the case �=1, where we have a loss of reflexivity, because in
this situation Φ̃ does not satisfies the Δ2-condition. For �=1, we have as model
Φ(t)=|t| log(1+|t|). In this section our main result is the following
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Theorem 1.2. Assume (φ1), (φ2), (φ4), (f1)−(f3). Then there exist λ∗>0
such that problem (P ) has at least two solutions u1, u2∈W 1,Φ

0 (Ω)∩L∞(Ω)\{0} for

all λ>λ∗.

Before concluding this introduction, we would like to point out that Theorems
1.1 and 1.2 complement the study made in [26], in the sense that we are considering
new classes of N-functions that were not considered in that reference. Moreover,
the above theorems are the first results in the literature involving multiplicity of
solutions for a class of quasilinear problems driven by a N-function Φ whose the
Orlicz-Sobolev space W 1,Φ

0 (Ω) can be nonreflexive.

2. Basics on Orlicz-Sobolev spaces

In this section we recall some properties of Orlicz and Orlicz-Sobolev spaces,
which can be found in [1], [33]. First of all, we recall that a continuous function
Φ:R→[0,+∞) is a N-function if:

(i) Φ is convex.
(ii) Φ(t)=0⇔t=0.

(iii) lim
t→0

Φ(t)
t

=0 and lim
t→+∞

Φ(t)
t

=+∞.
(iv) Φ is even.

We say that a N-function Φ verifies the Δ2-condition, if

Φ(2t)≤KΦ(t), ∀t≥ 0,

for some constant K>0. For instance, it can be shown that functions Φ given in
(i)−(v) satisfy the Δ2-condition, while Φ(t)=(et2−1)/2 does not verify it.

In what follows, fixed an open set Ω⊂R
N and a N-function Φ, we define the

Orlicz space associated with Φ as

LΦ(Ω)=
{
u∈L1

loc(Ω):
∫

Ω
Φ
(
|u|
λ

)
dx<+∞ for some λ> 0

}
.

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm given by

‖u‖Φ = inf
{
λ> 0 :

∫
Ω

Φ
( |u|
λ

)
dx≤ 1

}
.

The complementary function Φ̃ associated with Φ is given by its Legendre’s trans-
formation, that is,

Φ̃(s)=max
t≥0

{st−Φ(t)}, for s≥ 0.
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The functions Φ and Φ̃ are complementary each other. Moreover, we also have a
Young type inequality given by

st≤Φ(t)+Φ̃(s), ∀s, t≥ 0.

Using the above inequality, it is possible to prove a Hölder type inequality, that is,∣∣∣ ∫
Ω
uvdx

∣∣∣≤ 2‖u‖Φ‖v‖˜Φ, ∀u∈LΦ(Ω) and ∀v ∈L
˜Φ(Ω).

The corresponding Orlicz-Sobolev space is defined by

W 1,Φ(Ω)=
{
u∈LΦ(Ω) : ∂u

∂xi
∈LΦ(Ω), i=1, ..., N

}
,

endowed with the norm
‖u‖1,Φ = ‖∇u‖Φ+‖u‖Φ.

The space W 1,Φ
0 (Ω) is defined as the weak∗ closure of C∞

0 (Ω) in W 1,Φ(Ω).
Moreover, by the Modular Poincaré’s inequality∫

Ω
Φ(|u|) dx≤

∫
Ω

Φ(d|∇u|) dx, ∀u∈W 1,Φ
0 (Ω),

where d=diam(Ω), and it follows that

‖u‖Φ ≤ 2d‖∇u‖Φ, u∈W 1,Φ
0 (Ω).

The last inequality yields that the functional ‖·‖:=‖∇·‖Φ defines an equivalent
norm in W 1,Φ

0 (Ω). Here we refer the readers to the important works [21], [22]. The
spaces LΦ(Ω), W 1,Φ(Ω) and W 1,Φ

0 (Ω) are separable and reflexive, when Φ and Φ̃
satisfy Δ2-condition.

If EΦ(Ω) denotes the closure of L∞(Ω) in LΦ(Ω) with respect to the norm
‖ ‖Φ, then LΦ(Ω) is the dual space of E

˜Φ(Ω), while L
˜Φ(Ω) is the dual space of

EΦ(Ω). Moreover, EΦ(Ω) and E
˜Φ(Ω) are separable spaces and any continuous

linear functional M :EΦ(Ω)→R is of the form

M(v)=
∫

Ω
v(x)g(x) dx for some g ∈L

˜Φ(Ω).

We recall that if Φ verifies the Δ2-condition, we then have EΦ(Ω)=LΦ(Ω).
The next result is crucial in the approach explored in Section 3, and its proof

follows directly from a result by Donaldson [13, Proposition 1.1].
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Lemma 2.1. Assume that Φ is a N-function and Φ̃ verifies the Δ2-condition.

If (un)⊂W 1,Φ
0 (Ω) is a bounded sequence, then there are a subsequence of (un), still

denoted by itself, and u∈W 1,Φ
0 (Ω) such that

un
∗
⇀u in W 1,Φ

0 (Ω)

and∫
Ω
unv dx−→

∫
Ω
uv dx,

∫
Ω

∂un

∂xi
w dx−→

∫
Ω

∂u

∂xi
w dx, ∀v, w∈E

˜Φ(Ω)=L
˜Φ(Ω).

The lemma just above is crucial when the space W 1,Φ
0 (Ω) is not reflexive, for

example if Φ(t)=(et2−1)/2. However, if Φ is one of the functions given in (i)−(v),
the above lemma is not necessary since Φ and Φ̃ satisfy the Δ2-condition, and so,
W 1,Φ

0 (Ω) is reflexive. Here we would like to point out that (φ3) ensures that Φ̃
verifies the Δ2-condition, for more details see Fukagai and Narukawa [17].

Lemma 2.2. Suppose (φ1), (φ2) and either (φ3) or (φ4). Let (un)⊂W 1,Φ
0 (Ω)

be a fixed sequence such that ‖un‖→∞. Then there exists n0∈N such that∫
Ω

Φ(|∇un|)dx≥‖un‖l, ∀n≥n0.

Hence

‖un‖−→+∞ implies that

∫
Ω

Φ(|∇un|) dx−→+∞.

Proof. The proof is similar to that given in [17, Lemma 2.1]. �

3. Proof of Theorem 1.1

Note that under hypotheses (φ1)−(φ3), we cannot guarantee that Φ satisfies
Δ2-condition, then W 1,Φ

0 (Ω) can be a nonreflexive space. When Φ does satisfies
Δ2-condition, it is also well known that there exists u∈W 1,Φ

0 (Ω) such that∫
Ω

Φ(|∇u|) dx=+∞.

However, independent of the Δ2-condition, (f0) guarantees that the embedding
W 1,Φ

0 (Ω)↪→LA(Ω) is continuous. Having this in mind, the energy functional
I :W 1,Φ

0 (Ω)→R∪{+∞} associated with (P ) given by

(3.1) I(u)=
∫

Ω
Φ(|∇u|)dx−λ

∫
Ω
F (x, u)dx, u∈W 1,Φ

0 (Ω)
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is well defined. Hereafter, we denote by DΦ⊂W 1,Φ
0 (Ω) the set

DΦ =
{
u∈W 1,Φ

0 (Ω) :
∫

Ω
Φ(|∇u|) dx<+∞

}
.

The reader is invited to observe that DΦ=W 1,Φ
0 (Ω) when Φ satisfies the Δ2-condition.

As an immediate consequence of the above remarks, we cannot ensure that I

belongs to C1(W 1,Φ
0 (Ω),R). However, the functional F :W 1,Φ

0 (Ω)→R given by

F(u)=
∫

Ω
F (x, u)dx

belongs to C1(W 1,Φ
0 (Ω),R) and its derivative is given by

F ′(u)v=
∫

Ω
f(x, u)v dx, ∀u, v ∈W 1,Φ

0 (Ω).

Related to the functional Q:W 1,Φ
0 (Ω)→R∪{+∞} given by

(3.2) Q(u)=
∫

Ω
Φ(|∇u|)dx,

we know that it is strictly convex and l.s.c. with respect to the weak∗ topology.
Furthermore, Q∈C1(W 1,Φ

0 (Ω),R) when Φ and Φ̃ satisfy the Δ2-condition.
From the above commentaries, in the present paper we will use a minimax

method developed by Szulkin [34]. In this sense, we will say that u∈DΦ is a critical
point for I if 0∈∂I(u)=∂Q(u)−F ′(u), since F∈C1(W 1,Φ

0 (Ω),R). Then u∈DΦ is a
critical point of I if, and only if, F ′(u)∈∂Q(u), what, since Q is convex, is equivalent
to

(3.3) Q(v)−Q(u)≥λ

∫
Ω
f(x, u)(v−u) dx, ∀v ∈W 1,Φ

0 (Ω).

In the case where Φ and Φ̃ satisfy the Δ2-condition, we would like to point out
that the energy functional I∈C1(W 1,Φ

0 (Ω),R), and the last inequality is equivalent
to

(3.4) I ′(u)v=0, ∀v ∈W 1,Φ
0 (Ω),

that is, ∫
Ω
φ(|∇u|)∇u∇v dx=λ

∫
Ω
f(x, u)v dx, ∀v ∈W 1,Φ

0 (Ω).

The last identity yields that u is a weak solution of (P ). However, when Φ does not
satisfy Δ2-condition, the above conclusion is not immediate, and a careful analysis
must be done. For more details see Lemma 3.5 below.
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From now on, let us denote by ‖·‖ the usual norm in W 1,Φ
0 (Ω) given by

‖u‖= ‖∇u‖Φ

where

‖∇u‖Φ = inf
{
λ> 0 :

∫
Ω

Φ
(
|∇u|
λ

)
dx≤ 1

}
.

Moreover, we also denote by dom(φ(t)t)⊂W 1,Φ
0 (Ω) the following set

dom(φ(t)t)=
{
u∈W 1,Φ

0 (Ω) :
∫

Ω
Φ̃(φ(|∇u|)|∇u|) dx<∞

}
.

As Φ̃ verifies the Δ2-condition, the above set can be written of the form

dom(φ(t)t)=
{
u∈W 1,Φ

0 (Ω) : φ(|∇u|)|∇u| ∈L
˜Φ(Ω)

}
.

The set dom(φ(t)t) is not empty, since it is easy to see that C∞
0 (Ω)⊂dom(φ(t)t).

Lemma 3.1. Suppose (φ1)−(φ2). For each u∈DΦ, there is a sequence

(un)⊂dom(φ(t)t) such that

|un| ≤ |u|,
∫

Ω
Φ(|∇un|) dx≤

∫
Ω

Φ(|∇u|) dx and ‖u−un‖≤ 1/n.

Proof. See [3, Lemma 3.2]. �

Lemma 3.2. Assume that (φ1)−(φ3) and (f0) hold. Then, functional I is

coercive.

Proof. Indeed, supposing ‖u‖≥1, using (f0) and the embeddings W 1,Φ
0 (Ω)↪→

LA(Ω) and W 1,Φ
0 (Ω)↪→L1(Ω), we conclude that there exist positive constants C1

and C2 satisfying
I(u)≥‖u‖l−λC1‖u‖mA−λC2‖u‖.

Recalling the l>mA>1, we get the desired result. �

Lemma 3.3. Assume that (φ1)−(φ3) and (f0), (f2) hold. Then, there exists

λ∗>0 such that I is bounded from below in W 1,Φ
0 (Ω) and inf

u∈W 1,Φ
0 (Ω)

I(u)< 0 for all

λ>λ∗.
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Proof. First of all, the fact that I is coercive yields that there is R>0 such
that

I(u)≥ 1, for ‖u‖≥R.

On the other hand, by definition of I, a simple computation gives

|I(u)| ≤K, for ‖u‖≤R.

From this, there is M>0 such that

I(u)≥−M, for all u∈W 1,Φ
0 (Ω),

showing the boundedness of I from below in W 1,Φ
0 (Ω).

Next, we will show that inf
u∈W 1,Φ

0 (Ω)
I(u)< 0. By (f2), there exists t1>0 such that

F (x, t1)>0. Let Ω1⊂Ω be a compact subset large enough and u0∈W 1,Φ
0 (Ω) such

that u0(x)=t1 in Ω1 and 0≤u0(x)≤t1 in Ω\Ω1. Note that {x∈Ω:F (x, u0(x))<0}⊂
Ω\Ω1. So, using (f0),∫

Ω
F (x, u0)dx ≥

∫
Ω1

F (x, t1)dx−C

∫
Ω\Ω1

(A(u0)+|u0|)dx

≥
∫

Ω1

F (x, t1)dx−C|Ω\Ω1|(A(t1)+|t1|)> 0(3.5)

provided that |Ω\Ω1| is small enough. Thus I(u0)<0 for λ>0 large enough. This
proves the lemma. �

From Lemmas 3.2 and 3.3, I is bounded from below in W 1,Φ
0 (Ω). Thereby,

there is (un)⊂W 1,Φ
0 (Ω) such that

I(un)−→ I∞ = inf
u∈W 1,Φ

0 (Ω)
I(u) as n−→+∞.

Consequently, taking into account that I is coercive, the sequence (un) must be
bounded in W 1,Φ

0 (Ω). Therefore, by Lemma 2.1, for some subsequence denoted by
itself, there is u1∈W 1,Φ

0 (Ω) such that

un
∗
⇀u1 in W 1,Φ

0 (Ω).

Now, applying [20, Lemma 3.2] and [15], it follows that I is weak∗ lower semicon-
tinuous. As a consequence,

lim inf
n→+∞

I(un)≥ I(u1).

The last estimate implies that
I(u1)= I∞.
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From this, u1∈W 1,Φ
0 (Ω)\{0}, I(u1)<0 and

(3.6) Q(v)−Q(u1)≥λ

∫
Ω
f(x, u1)(v−u1) dx, ∀v ∈W 1,Φ

0 (Ω).

Lemma 3.4. u1∈DΦ∩dom(φ(t)t).

Proof. Making v=0 in (3.6), using (f0) and Hölder’s inequality we find∫
Ω

Φ(|∇u1|) dx=Q(u1)≤λ

∫
Ω
f(x, u1)u1 dx<∞.

This proves that u1∈DΦ.
In the sequel, we will show that u1∈dom(φ(t)t). Setting v=

(
1− 1

n

)
u1 in (3.6),

we get ∫
Ω

[Φ(|∇(1−1/n)u1|)−Φ(|∇u1|)] dx=Q ((1−1/n)u1)−Q(u1)

≤− 1
n
λ

∫
Ω
f(x, u1)u1 dx.

Since Φ is C1, there exists θn(x)∈[0, 1] such that

Φ(|∇u1− 1
n∇u1|)−Φ(|∇u1|)

− 1
n

=φ(|(1−θn(x)/n)∇u1|)(1−θn(x)/n)|∇u1|2.

Recalling that 0<1−θn(x)/n≤1, we know that

1−θn(x)/n≥ (1−θn(x)/n)2 := gn(x),

which leads to∫
Ω
φ(|gn(x)∇u1|)|gn(x)∇u1|2 dx≤λ

∫
Ω
f(x, u1)u1 dx, ∀n∈N.

Letting n→+∞, we derive that∫
Ω
φ(|∇u1|)|∇u1|2 dx≤λ

∫
Ω
f(x, u1)u1 dx.

Recalling that
φ(t)t2 =Φ(t)+Φ̃(φ(t)t), ∀t∈R

so, we have
φ(|∇u1|)|∇u1|2 =Φ(|∇u1|)+Φ̃(φ(|∇u1|)|∇u1|),
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which leads to∫
Ω
φ(|∇u1|)|∇u1|2 dx=

∫
Ω

Φ(|∇u1|) dx+
∫

Ω
Φ̃(φ(|∇u1|)|∇u1|) dx.

As
∫

Ω
φ(|∇u1|)|∇u1|2 dx and

∫
Ω

Φ(|∇u1|) dx are finite, we infer that∫
Ω

Φ̃(φ(|∇u1|)|∇u1|) dx is also finite, then u1∈dom(φ(t)t). This finishes the proof.
�

Lemma 3.5. Suppose (φ1)−(φ2) and let u∈DΦ be a critical point of I. If

u∈dom(φ(t)t), then it is a weak solution for (P ), that is,∫
Ω
φ(|∇u|)∇u∇v dx=λ

∫
Ω
f(x, u)v dx, ∀v ∈W 1,Φ

0 (Ω).

Proof. Hereafter, we adapt the arguments found in [10, Lemma 4.5]. Given
ε∈(0, 1

2 ) and v∈C∞
0 (Ω), we set the function

vε = 1
1− ε

2
((1−ε)u+εv).

Hence, as u is a critical point of I,∫
Ω

Φ(|∇vε|) dx−
∫

Ω
Φ(|∇u|) dx≥λ

∫
Ω
f(x, u)(vε−u) dx,∀ε∈ (0, 1/2),

and so, ∫
Ω Φ(|∇vε|) dx−

∫
Ω Φ(|∇u|) dx

ε
≥λ

∫
Ω
f(x, u)

(
vε−u

ε

)
dx.

Taking the limit as ε→0, we get∫
Ω
φ(|∇u|)∇u(∇v−∇u/2) dx≥λ

∫
Ω
f(x, u)(v−u/2) dx

or equivalently∫
Ω
φ(|∇u|)∇u∇v dx−λ

∫
Ω
f(x, u)v dx≥A, ∀v ∈C∞

0 (Ω),

where
A= 1

2

∫
Ω
φ(|∇u|)|∇u|2 dx−λ

2

∫
Ω
f(x, u)u dx.

As C∞
0 (Ω) is a vector space, the last inequality gives∫

Ω
φ(|∇u|)∇u∇v dx−λ

∫
Ω
f(x, u)v dx=0, ∀v ∈C∞

0 (Ω).

Now the result follows using the weak∗ density of C∞
0 (Ω) in W 1,Φ(Ω) together

with the fact that φ(|∇u|)|∇u|∈L˜Φ(Ω). �



Multiple solutions for two classes of quasilinear problems 13

As a byproduct of the last lemma is the following corollary.

Corollary 3.6. Suppose that (φ1)−(φ3), (f0) and (f2) hold. Then u1 is a

solution of problem (P ) with I(u1)<0 for λ≥λ∗.

We are going to use the Mountain Pass Theorem to find a second critical point
of I. To this end, we define

g(x, t) :=

⎧⎨⎩
0 if t<0;
f(x, t) if 0≤t≤u1(x);
f(x, u1) if t>u1(x).

Now, let us consider the functional J :W 1,Φ
0 (Ω)→R∪{+∞} defined by

J(u)=
∫

Ω
Φ(|∇u|)dx−λ

∫
Ω
G(x, u)dx,(3.7)

where G(x, t):=
∫ t

0 g(x, s)ds. Due to Lemma 3.5, we can follow the same ideas found
in [26, Lemma 2] to prove the lemma below

Lemma 3.7. If u is a solution of problem

(PA)
{
−ΔΦu=λg(x, u), in Ω,

u=0, on ∂Ω,

then u≤u1.

The next lemma establishes the first mountain pass geometry.

Lemma 3.8. Suppose that (φ1)−(φ3), (f0) and (f1) hold. There exist r, ρ>0
such that J(u)≥ρ for all u∈W 1,Φ

0 (Ω) with ‖u‖=r.

Proof. Condition (f1) implies that there exists δ>0 such that

F (x, t)≤ 0, 0≤ t≤ δ.

Define Ωu :=[u>min{δ, u1}]. From the last inequality,

G(x, u(x))=F (x, u(x))≤ 0, a.e. in x∈Ω\Ωu.

On the other hand,

G(x, u(x))≤ 0, a.e. in Ωu∩[u1 <u<δ].
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Let Ωu,δ :=Ωu\[u1<u<δ], Ω−
u,δ :=Ωu,δ∩[u≤u1] and Ω+

u,δ :=Ωu,δ∩[u>u1]. From (f0),
W 1,Φ

0 (Ω)↪→LΦ(Ω)↪→Ll(Ω)↪→Ls(Ω) for s∈(mA, l). Then,

λ

∫
Ωu,δ

G(x, u)dx ≤ λC

∫
Ω−

u,δ

(A(|u|)+|u|) dx+λ

∫
Ω+

u,δ

(F (x, u1)+f(x, u1)(u−u1)) dx

≤ λC

∫
Ωu,δ

(A(|u|)+|u|) dx

≤ λCδ

∫
Ωu,δ

max
{(u

δ

)
,
(u
δ

)mA
}
dx

≤ λ
Cδ

δs

∫
Ωu,δ

|u|s dx≤Cδ‖u‖s,(3.8)

where C, Cδ and Cδ are positive constants. Therefore, considering ‖u‖≥1, by
Lemma 2.2 and (3.8),

J(u)≥‖u‖l−λ

∫
Ωu,δ

G(x, u)dx≥‖u‖l(1−λCδ‖u‖s−l).

This proves the lemma. �

Lemma 3.9. J is coercive.

Proof. By (f0)
|F (x, t)| ≤CA(A(t)+|t|), t∈R

and
f(x, u1)(t−u1)≤ 2CA(A(t)+|t|), ∀t≥u1.

Thus, for ‖u‖≥1,∫
Ω

Φ(|∇u|)dx−λ

∫
Ω
G(x, u)dx=

=
∫

Ω
Φ(|∇u|)dx−λ

∫
u≤u1

F (x, u)dx−λ

∫
u>u1

F (x, u1)+f(x, u1)(u−u1)dx

≥
∫

Ω
Φ(|∇u|)dx−3λCA

∫
Ω
(A(u)+|u|)dx

≥‖u‖l−λc1‖u‖mA−λc2‖u‖,(3.9)

where c1, c2 are positive constants. As 1<mA<l, we get the desired result. �
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Proof of Theorem 1.1. Gathering Lemma 3.8 with the fact that J(u1)=I(u1)<
0 for λ≥λ∗, we can apply the Mountain Pass Theorem found in [4, Theorem 3.1]
to guarantee the existence of a (PS) sequence (un)⊂W 1,Φ

0 (Ω) associated with the
mountain pass level of J , that is, J(un)→c≥ρ and τn→0 in R such that

(3.10) Q(v)−Q(un)≥λ

∫
Ω
g(x, un)(v−un) dx−τn‖v−un‖,

for all v∈W 1,Φ
0 (Ω) holds true for all n∈N, where

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

and
Γ = {γ ∈C[0, 1]| γ(0)= 0, γ(1)=u1}.

By Lemma 3.9, (un) is bounded. Hence, we can assume without loss of generality
that un

∗
⇀u2 in W 1,Φ

0 (Ω).
In the sequel, we will show that u2∈dom(φ(t)t). By Lemma 3.1, there is

(vn)⊂dom(φ(t)t) such that

|vn| ≤ |un|, ‖vn−un‖≤ 1/n and
∫

Ω
Φ(|∇vn|) dx≤

∫
Ω

Φ(|∇un|) dx, ∀n∈N.

Consequently,

Q(v)−Q(vn)≥λ

∫
Ω
g(x, un)(v−un) dx−|τn| ‖v−un‖,

for all v∈W 1,Φ
0 (Ω). Setting v=vn− 1

nvn, we get

Q(vn−
1
n
vn)−Q(vn)≥λ

∫
Ω
g(x, un)(vn−

1
n
vn−un) dx−|τn| ‖vn−

1
n
vn−un‖,

that is,∫
Ω

(Φ(|∇vn− 1
n∇vn|)−Φ(|∇vn|))

− 1
n

dx≤

−nλ

∫
Ω
g(x, un)(vn−un) dx+λ

∫
Ω
g(x, un)vn dx+n|τn| ‖vn−un‖+|τn| ‖vn‖.

As (un) is bounded in W 1,Φ
0 (Ω), (g(x, un)) is bounded in LÃ(Ω), (τn) is bounded in

R and ‖vn−un‖≤ 1
n , it follows that the right side of the above inequality is bounded.

Therefore, there is M>0 such that∫
Ω

(Φ(|∇vn− 1
n∇vn|)−Φ(|∇vn|))

− 1
n

dx≤M, ∀n∈N.
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Using again that Φ is C1, there exists θn(x)∈[0, 1] such that

Φ(|∇vn− 1
n∇vn|)−Φ(|∇vn|)

− 1
n

=φ(|(1−θn(x)/n)∇vn|)(1−θn(x)/n)|∇vn|2.

Recalling that 0<1−θn(x)/n≤1, we know that

1−θn(x)/n≥ (1−θn(x)/n)2,

which leads to∫
Ω
φ(|(1−θn(x)/n)∇vn|)(1−θn(x)/n)2|∇vn|2 dx≤M ∀n∈N.

As un
∗
⇀u2 in W 1,Φ

0 (Ω), we also have (1−θn(x)/n)vn
∗
⇀u2 in W 1,Φ

0 (Ω). Therefore,
using the fact that φ(t)t2 is convex, we can apply [20, Lemma 3.2] to obtain

lim inf
n→+∞

∫
Ω
φ(|(1−θn(x)/n)∇vn|)(1−θn(x)/n)2|∇vn|2 dx≥

∫
Ω
φ(|∇u2|)|∇u2|2 dx,

and so, ∫
Ω
φ(|∇u2|)|∇u2|2 dx≤M.

Recalling that
φ(t)t2 =Φ(t)+Φ̃(φ(t)t), ∀t∈R,

we have
φ(|∇u2|)|∇u2|2 =Φ(|∇u2|)+Φ̃(φ(|∇u2|)|∇u2|),

which leads to∫
Ω
φ(|∇u2|)|∇u2|2 dx=

∫
Ω

Φ(|∇u2|) dx+
∫

Ω
Φ̃(φ(|∇u2|)|∇u2|) dx.

Since
∫

Ω
φ(|∇u2|)|∇u2|2 dx and

∫
Ω

Φ(|∇u2|) dx are finite, we see that∫
Ω

Φ̃(φ(|∇u2|)|∇u2|) dx is also finite.

Claim. J(un)→J(u2) as n→+∞.

In fact, from (3.10) and W 1,Φ
0 (Ω)

comp
↪→ LA(Ω),∫

Ω
G(x, un)dx−→

∫
Ω
G(x, u2)dx and∫

Ω
g(x, un)(v−un)dx−→

∫
Ω
g(x, u2)(v−u2)dx.
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Since (J(un)) is bounded sequence, for some a subsequence of (un), still denoted
by itself, we can assume that

lim
n→∞

Q(un)=L.

Using the fact that Q is lower semicontinuous with respect to the weak* topology,
we derive that

Q(u2)≤ lim inf
n→∞

Q(un)=L.

On the other hand, making v=u2 in (3.10), we conclude that

Q(u2)≥ lim inf
n→∞

Q(un)=L,

and so,
lim
n→∞

Q(un)=Q(u2).

Thus, J(un)→J(u2)=c. Now, we can use the same ideas of Lemma 3.4 to prove
that u2∈DΦ∩dom(φ(t)t). Letting n→+∞ in (3.10), we conclude that u2 is a
critical point of J . Using similar idea explored in the proof of Lemma 3.5, u2 is a
weak solution of (PA). From Lemma 3.7 we obtain that u2≤u1, then g(x, u2(x))=
f(x, u2(x)) for all x∈Ω, from where it follows that u2 is a weak solution of (P ) with
J(u2)=I(u2). Moreover, by Lemma 3.5, u2 is a weak solution of (P ). But, from
Lemma 3.3, I(u1)<0<c=I(u2), from where it follows that u1 �=u2. This finishes
the proof. �

4. Proof of Theorem 1.2

In this section we will use the same approach of the last section. In order
to avoid some repetitions, we are going to show only the different accounts. For
example, it is important to point out that if (φ4) holds, then DΦ=dom(tφ(t))=
W 1,Φ

0 (Ω).

Lemma 4.1. Assume that (φ1), (φ2), (φ4) and (f3) hold. Then the functional

I is coercive.

Proof. Initially, from (f3),

|F (x, t)| ≤ C

α
Φ(t)α.(4.1)

Using (4.1), Hölder’s and Poincaré’s Inequalities, there exist positive constants C1
and C2 satisfying

I(u) ≥
∫

Ω
Φ(|∇u|)dx−λ

C

α

∫
Ω
[Φ(u)]αdx
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≥
∫

Ω
Φ(|∇u|)dx−λC1

(∫
Ω

Φ(|∇u|)dx
)α

≥
∫

Ω
Φ(|∇u|)dx

[
1−λC2

(∫
Ω

Φ(|∇u|)dx
)α−1

]
.

As α∈(0, 1), the Lemma 2.2 ensures that I is coercive functional. This finishes the
proof. �

Lemma 4.2. Assume that (φ1), (φ2), (φ4), (f2) and (f3) hold. Then, there

exist λ∗>0 such that I is bounded from below in W 1,Φ
0 (Ω) and inf

u∈W 1,Φ
0 (Ω)

I(u)< 0

for all λ>λ∗.

Proof. Since the boundedness of I from below follows as in Lemma 3.3, we will
omit this part. The rest of the proof follows as the same ideas of Lemma 3.3. But,
we need to change the inequality (3.5) by∫

Ω
F (x, u0)dx ≥

∫
Ω1

F (x, t1)dx−C

∫
Ω\Ω1

Φ(u0)αdx

≥
∫

Ω1

F (x, t1)dx−C|Ω\Ω1|Φ(t1)α > 0.(4.2)

Here, we point out that in the first inequality we have used (4.1). �

Corollary 4.3. Suppose that (φ1), (φ2), (φ4), (f2) and (f3) hold. Then, there
exists a solution u1 of problem (P ) such that I(u1)<0.

Proof. Since I is lower semicontinuous in weak∗ topology, we can use Lemmas
4.1 and 4.2 to obtain u1∈W 1,Φ

0 (Ω) such that

I(u1) := inf
u∈W 1,Φ

0 (Ω)
I(u)< 0.

Since I is Gâteaux differentiable, it follows from [34, Prop. 1.1] that u1 is a critical
point of I. Moreover, using the fact that Φ satisfies the Δ2-condition, we obtain that
DΦ=dom(φ(t)t)=W 1,Φ

0 (Ω). From Lemma 3.5, we conclude that u1 is a solution of
problem (P ). �

Now, we shall consider the functional J defined by (3.7).

Lemma 4.4. Assume (φ1), (φ2), (φ4), (f2), (f3) and m<l∗. Then there exist

r, ρ>0 such that I(u)≥ρ for all u∈W 1,Φ
0 (Ω) with ‖u‖=r.
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Proof. We shall use the same ideas of Lemma 3.8, but we need to do some
adjusts. Assume that ‖u‖≤1. We will change the inequality (3.8). For this end, by
(f3), (4.1) and choosing s∈(m, l∗),

λ

∫
Ωu,δ

G(x, u)dx ≤ λC

∫
Ω−

u,δ

Φ(u)α dx+λC

∫
Ω+

u,δ

(F (x, u1)+f(x, u1)(u−u1)) dx

≤ λC

∫
Ωu,δ

Φ(u)α dx

≤ λCδ

∫
Ωu,δ

max
{(u

δ

)α

,
(u
δ

)mα}
dx

≤ λ
Cδ

δs

∫
Ωu,δ

|u|s dx≤Cδ‖u‖s.(4.3)

Thus, from (4.3),

J(u)≥‖u‖m−λ

∫
Ωu,δ

G(x, u)dx≥‖u‖m(1−λCδ‖u‖s−m). �

The Lemma 4.4 combined with the equality J(u1)=I(u1)<0 permit to use
again the Mountain Pass Theorem to obtain a sequence (un)⊂W 1,Φ

0 (Ω) such that
J(un)→c≥ρ>0 and (3.10) holds.

Lemma 4.5. Assume (φ1), (φ2), (φ4) and (f1)−(f3). Then (un) is bounded.

Proof. Using similar idea of Lemmas 4.1 and 3.9, we can prove that J is coer-
cive, and so, (un) must be bounded. �

Proof of Theorem 1.2. Initially, by Lemma 4.5, un
∗
⇀u2, for some u2∈W 1,Φ

0 (Ω).
Moreover, un→u2 a.e. in Ω and there exists h∈LΦ(Ω) such that |un|≤h.

Claim. J(un)→J(u2) as n→+∞.

Firstly, we will prove that∫
Ω
G(x, un)dx−→

∫
Ω
G(x, u2)dx.(4.4)

In fact, by (4.1),
|G(x, t)|= |F (x, t)| ≤CΦα(t), 0<t<u1.

Now, using [12, Theorem 1.6], we have u1∈L∞(Ω). From this,

|G(x, t)| ≤ |F (x, u1)|+|f(x, u1)||t−u1| ≤C1+C2t, u1 <t.
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Consequently,
|G(x, un)| ≤C1+CΦα(h)+C2h∈L1(Ω).

Now, (4.4) follows from Lebesgue dominated convergence theorem. A similar argu-
ment works to prove that∫

Ω
g(x, un)(v−un)dx−→

∫
Ω
g(x, u2)(v−u2)dx, v ∈W 1,Φ

0 (Ω)

As in the proof of Theorem 1.1,

lim
n→∞

Q(un)=Q(u2).

Thus, J(un)→J(u2)=c. Letting n→+∞ in (3.10), we conclude that u2 is a critical
point of J . Using the same ideas explored in the proof of Lemma 3.5, it is easy to see
that u2 is a weak solution of (PA). Arguing as in the proof of Theorem 1.1, u2 is a
weak solution of (P ) with J(u2)=I(u2). But, from Lemma 3.3, I(u1)<0<c=I(u2),
this implies that u1 �=u2. Moreover, From [12, Theorem 1.6], u2∈L∞(Ω), which
finishes the proof. �
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