Open Access
May, 1981 Unbiased and Minimum-Variance Unbiased Estimation of Estimable Functions for Fixed Linear Models with Arbitrary Covariance Structure
David A. Harville
Ann. Statist. 9(3): 633-637 (May, 1981). DOI: 10.1214/aos/1176345467

Abstract

Consider a general linear model for a column vector $y$ of data having $E(y) = X \alpha$ and $\operatorname{Var}(y) = \sigma^2H$, where $\alpha$ is a vector of unknown parameters and $X$ and $H$ are given matrices that are possibly deficient in rank. Let $b = Ty$, where $T$ is any matrix of maximum rank such that $TH = \phi$. The estimation of a linear function of $\alpha$ by functions of the form $c + a'y$, where $c$ and $a$ are permitted to depend on $b$, is investigated. Allowing $c$ and $a$ to depend on $b$ expands the class of unbiased estimators in a nontrivial way; however, it does not add to the class of linear functions of $\alpha$ that are estimable. Any minimum-variance unbiased estimator is identically [for $y$ in the column space of $(X, H)$] equal to the estimator that has minimum variance among strictly linear unbiased estimators.

Citation

Download Citation

David A. Harville. "Unbiased and Minimum-Variance Unbiased Estimation of Estimable Functions for Fixed Linear Models with Arbitrary Covariance Structure." Ann. Statist. 9 (3) 633 - 637, May, 1981. https://doi.org/10.1214/aos/1176345467

Information

Published: May, 1981
First available in Project Euclid: 12 April 2007

zbMATH: 0477.62053
MathSciNet: MR615439
Digital Object Identifier: 10.1214/aos/1176345467

Subjects:
Primary: 62J05

Keywords: best linear unbiased estimation , Gauss-Markov theorem , linear models , singular covariance matrices

Rights: Copyright © 1981 Institute of Mathematical Statistics

Vol.9 • No. 3 • May, 1981
Back to Top