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UNBIASED AND MINIMUM-VARIANCE UNBIASED ESTIMATION
OF ESTIMABLE FUNCTIONS FOR FIXED LINEAR MODELS WITH
ARBITRARY COVARIANCE STRUCTURE’

By Davib A. HARVILLE

ITowa State University

Consider a general linear model for a column vector y of data having E(y)
= Xa and Var(y) = ¢2H, where a is a vector of unknown parameters and X
and H are given matrices that are possibly deficient in rank. Let b = T'y, where
T is any matrix of maximum rank such that TH = ¢. The estimation of a
linear function of a by functions of the form ¢ + a’y, where ¢ and a are
permitted to depend on b, is investigated. Allowing ¢ and a to depend on b
expands the class of unbiased estimators in a nontrivial way; however, it does
not add to the class of linear functions of «a that are estimable. Any minimum-
variance unbiased estimator is identically [for y in the column space of (X,
H)] equal to the estimator that has minimum variance among strictly linear
unbiased estimators.

1. Introduction. Take y to be an n X 1 data vector having E(y) = X« and Var(y)
= ¢’H, where « is a p X 1 parameter vector, o is a known or unknown scalar, and X and
H are known matrices. The parameter space is {« : « € R?} or {(a, 0%) : « € R”, 0% > 0},
depending on whether ¢ is known or unknown. No assumptions are made about rank (X)
or rank (H). This setup is referred to as the general Gauss-Markov model.

Take T to be any matrix satisfying TH = ¢ whose rank is a maximum, equal to n —
rank(H), and let b = Ty and A = TX. It can be shown that rank(4) = rank(X, H) —
rank(H). Further, let L = I — A™A, or take L to be any other matrix satisfying AL = ¢
whose rank equals p + rank(H) — rank(X, H). (For any matrix B, B~ will denote an
arbitrary generalized inverse of B, i.e., any solution to BB"B = B, and %(B) will denote
the column space of B.)

We have that Var(b) = ¢, implying that

Aa = b with probability 1.

Once y is observed, we know the right side, as well as the coefficient matrix, of the equation
A« = b, which “must” be satisfied by a. Based on this fact, several writers, e.g., Zyskind
and Martin (1969), Rao (1972), and Kempthorne (1976), have asserted that, to ensure that
a function of the form ¢ + a'y estimate unbiasedly a linear parametric function \'a, we
need only require that E(c + a’y) = N'a for those a for which Aa = b rather than for all
a. This is the same as requiring that

11) cec=WN-dX)A™b and N —-—aX)L=¢ whenever b € %(A).

[Actually, these writers confine themselves to “homogeneous” functions a’y, which is
equivalent to superimposing the condition ¢ = 0 on conditions (1.1).]
Conditions (1.1) differ from the seemingly more restrictive conditions
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(1.2) c=0 and XN-aX=¢

claimed by various other writers, e.g., Albert (1972), to be necessary and sufficient for ¢
+ a’y to estimate unbiasedly A’a. This apparent contradiction can be resolved by observing
that it is implicit in the approach that leads to conditions (1.1) that ¢ and a be allowed to
be functionally dependent on y (through &), while conditions (1.2) are obtained by
specifying that ¢ and a be functionally independent of y (and of «).

The purpose of the present article is to derive necessary and sufficient conditions for
the unbiasedness and minimum-variance unbiasedness of estimators of \’a having the form
c(b) + [a(b)]y, where c(-) is a function and a(-) is a vector-valued function.? The form
c(b) + [a(b)]'y is (in general) nonlinear in y, however

(1.3) c(b) + [a(b)]y = c(Aa) + [a(Aa)]y with probability 1.

2. Unbiased representations. Using result (1.3), we find that
E{c(b) + [a(b)]y} = E{c(Aa) + [a(Aa)]y} = c(Aa) + [a(Aa)] Xa
and thus that the condition
E{c(b) + [a(®)]y} =Na forall a€ R?
is equivalent to the condition .
c(y) + [a(y)]Xa =Na for all @ such that Aa =y andall y€& %(A).

Now, applying standard results on constrained linear estimation, see, e.g., Rao 1973,
Section 4a.9, we obtain the following theorem.

THEOREM 1. Under the general Gauss-Markov model, c(b) + [a(b)]'y is an unbiased
estimator of N'a if and only if

(2.1) c(d) =[A—X'a(b)TA™b and [A=Xa(®)]L =¢ forall b€ ¥A)
or, equivalently, if and only if, for some vector-valued function k(-),
c(b) = [k(b)]b and A — X'a(b) = A’k(b) forall be ¥A).
Note that conditions (2.1) are essentially the same as the unbiasedness conditions (1.1)

obtained by acting as though b were a vector of constants and « were subject to constraints
Aa = b. Note also that, if ¢(-) and a(-) satisfy conditions (2.1), then, defining

c1(b) =c(d) —[A —X'a(0)JA™d and  ai(d) = a(d) + T'(A7)[A — X'a(d)],
we have that
c1(b) + [ai(D)]y = c(b) + [a(b)]y  forall y€E R"
and that '
ci(b)=0 and N —[ai(b)]X=¢ foral bE 4A).

Thus, if an estimator has a representation of the form c¢(b) + [a(b)]'y which satisfies
conditions (2.1), it has a second representation of the same form which satisfies the
conditions

(2.2) c(b)=0 and N —[a®B)]X=9¢ for all b€ ¥(A).

Conditions (2.2) resemble the unbiasedness conditions (1.2) obtained when attention is

2 This class of estimators was considered also by Rao (1979), in a paper submitted for publication
subsequent to the present paper.
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restricted to functions ¢ + a’y where ¢ and a do not depend on y (or a). If we were to
restrict attention to forms c(b) + [a(b)]'y that satisfy conditions (2.2) rather than the more
general conditions (2.1), no estimators would be lost, however some representations of
estimators having multiple representations would be sacrificed.

We say that X'« is estimable if there exists a function having the form c(d) + [a(b)]y
that is an unbiased estimator of \'a. Clearly, \'« is estimable if and only if A € #(X’). Thus,
allowing ¢ and a in the form ¢ + a’y to depend on b does not expand the class of estimable
parametric functions.

3. Minimum-variance unbiased representations. To derive conditions that are
necessary and sufficient for the form ¢(d) + [a(b)]’y to comprise a minimum-variance
unbiased estimator of an estimable function X'a, we apply the following result.

THEOREM 2. Suppose that V is a symmetric nonnegative definite matrix, that K is
any matrix, and that p is a column vector such that uE FK').
(i) The linear system

 56)-C)

is consistent, i.e., has a solution fore and p.

(ii) A necessary and sufficient condition for a to minimize the quadratic form a'Va,
subject to the linear constraints K'a = p, is that a comprise the first component of some
solution to system (3.1).

(ii)) Every vector a that comprises the first component of some solution to system (3.1)
is generated from a particular solution a* by putting a = a* — d and letting d range over
all solutions to [V, K]'d = ¢.

The results that make up Theorem 2 were reported in a series of papers by C. R. Rao.
Simple proofs of parts (i) and (ii) can be found in Kempthorne’s (1976) article. Part (iii)
can be established by noting that, if d and r satisfy

(& 2)0)- )

then Vd = —Kr, implying that d'Vd = —d’Kr = ¢ and thus that Vd = ¢.
We find that

Var{c(d) + [a(b)]'y} = o*[a(Aa)Ha(Ax).

Thus, among representations of the form c(b) + [a(b)]'y, a representation is a uniformly
minimum-variance unbiased estimator of an estimable function N« if and only if ¢(-) and
a(-) are such that, for each b € 4(A), c(b) = [A — X'a(b)]/A™b and a(b) minimizes
[a(b)Ha(b) subject to the constraint [\ — X’a(b)]'L = ¢. Applying parts (i) and (ii) of
Theorem 2, we obtain the following result.

THEOREM 3. Assume the general Gauss-Markov model, and suppose that Na is
estimable. The linear system

H XL\(fa)_{( ¢
(e V)C)- ()

is consistent, i.e., has one or more solutions for a and p; and, among representations of
the form c(b) + [a(b)]'y, a representation is a uniformly minimum-variance unbiased
estimator of N'a if and only if, for each b € 4(A), c(b) = [\ — X'a(b)]A”b and a(b)
comprises the first component of some solution to the system (3.2).

In deriving estimators having uniformly minimum variance, among estimators with
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representations of the form c(d) + [a(b)]’y that are unbiased for A’ [i.e., representations
satisfying conditions (2.1)], we could have restricted our search to representations satisfying
conditions (2.2). It follows from the results of Section 2 that we would have obtained
exactly the same minimum-variance unbiased estimators as before, though certain repre-
sentations of those estimators having multiple representations would have been lost.
Applying Theorem 2, we have that, among representations of the form c(b) + [a(d)]’y that
satisfy conditions (2.2), the representations that have uniformly minimum variance are
those such that, for each b € 4(A), c(b) = 0 and a(b) comprises the first component of
some solution to the necessarily consistent linear system

0 (& $)6)- ()

Theorem 3 characterizes representations having minimum variance among representa-
tions of the form c(b) + [a(b)]'y that are unbiased for A’a. Part (iii) of Theorem 2 can be
used to obtain an alternative characterization. Clearly, a vector d satisfies the condition
(H, XL)'d = ¢ if and only if d = T"s for some vector s. Thus, taking a* to be the first
component of any solution to system (3.3) [in which case a* is also the first component of
some solution to system (3.2)], we find that, among representations of the form c(b) +
[a(b)]'y that are unbiased for \’a, the representations having minimum variance are those
for which there exists a vector-valued function s(-) such that

(3.4) c(b) =[s(D)]'b and a(b) = a* — T's(b) for all b€ %(A).

It follows from the characterization (3.4) that, if ¢(y) and t:(y) are any two of the
minimum-variance unbiased estimators of A'a of the form c(b) + [a(b)]y, then ¢t (y) =
t2(y) for all y for which b € %(A) or equivalently [since, for any vector r, Ar = b if and only
ify—-Xre ¥H)]forally € ¥X, H).

It can be shown that the rank of the coefficient matrix of system (3.2) equals rank(H)
+ rank(XL) and that rank (XL) = rank(X) + rank(H) — rank(X, H).

4. Example. Lety = (y1, ¥2, ¥s, ¥4) and a = (a1, a2)’, and put

1 0 1 0 0O
1 0 0 0 0 O
=110 and  H=|, 4 ¢ g
01 0 0 0 O
We can take
0100 1 0 Ya
T={0 0 1 0], in which case A=[(1 0 and b=1y].
0 0 01 01 Ya

A generalized inverse of A is

A-

1 00
00 1)
We can choose L=1— A"A = ¢.
Consider the estimation of N'a with X’ = (1, 0), i.e., of a;. The function ¢(y) = y1 — y1ys
— y1y4 + ¥3 + y34 can be written as c(b) + [a(b)]'y with

(4.1) c(b) =0 and [a(®)] = (1 — y3 — 4, 0, y3, y3).

It is easy to verify that this ¢(-) and a(-) satisfy conditions (2.1) and thus that #(y) is an
unbiased estimator of «;.

The functions ¢(-) and a(-) as given by (4.1) do not satisfy conditions (2.2); however the
estimator #(y) can also be written as ¢;(b) + [a:1(d)]y with
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c1(b) = ya(ys — y2) and  [ai(0)] = (1 —ys — ¥4, 54,3, 0),

and ci(+) and a;(-) do satisfy conditions (2.2).

The general form for first components of solutions to system (3.2) is @ = (0, k1, k2, k3)’,
where k1, ks and k3 are arbitrary. Thus, among representations of the form ¢(b) + [a(b)]y,
the representations that are uniformly minimum-variance unbiased estimators of A’a are
those such that, for all & having y, = s,

(4.2) [a(d)] = [0, ki(b), k2(b), k3(B)]  and  c(b) = [1 — ki(b) — k2(b)]y2 — ks(b) s,
where k&1(-), k2(+), and k3(-) are arbitrary functions. Making the substitution (4.2), we get
c(®) + [a(®)]y = y2 + (s — y2)ka(d),

which reduces to y, for y € €(X, H).
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