October 2022 Asymptotic analysis of synchrosqueezing transform—toward statistical inference with nonlinear-type time-frequency analysis
Matt Sourisseau, Hau-Tieng Wu, Zhou Zhou
Author Affiliations +
Ann. Statist. 50(5): 2694-2712 (October 2022). DOI: 10.1214/22-AOS2203

References

  • ALIAN, A. A. and PHOTOPLETHYSMOGRAPHY, K. H. S. (2014). Bailliere’s Best Pract. Res., Clin. Anaesthesiol. 28 395–406.
  • AUGER, F. and FLANDRIN, P. (1995). Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 43 1068–1089.
  • BAXLEY, R. J., WALKENHORST, B. T. and ACOSTA-MARUM, G. (2010). Complex Gaussian ratio distribution with applications for error rate calculation in fading channels with imperfect CSI. In IEEE Global Communications Conference.
  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300.
  • BERNSTEIN, D. S. (2009). Matrix Mathematics: Theory, Facts, and Formulas, 2nd ed. Princeton Univ. Press, Princeton, NJ.
  • BROCKWELL, P. J. (2001). Continuous-time ARMA processes. In Stochastic Processes: Theory and Methods. Handbook of Statist. 19 249–276. North-Holland, Amsterdam.
  • BROCKWELL, P. J. and DAVIS, R. A. (2016). Introduction to Time Series and Forecasting, 3rd ed. Springer Texts in Statistics. Springer, Cham.
  • CANDÈS, E. J., CHARLTON, P. R. and HELGASON, H. (2008). Detecting highly oscillatory signals by chirplet path pursuit. Appl. Comput. Harmon. Anal. 24 14–40.
  • CHASSANDE-MOTTIN, E., FLANDRIN, P. and AUGER, F. (1998). On the statistics of spectrogram reassignment vectors. Multidimens. Syst. Signal Process. 9 355–362.
  • CHEN, Y.-C., CHENG, M.-Y. and WU, H.-T. (2014). Non-parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 651–682.
  • CHEN, Z. and WU, H.-T. (2021). Disentangling modes with crossover instantaneous frequencies by synchrosqueezed chirplet transforms, from theory to application. Appl. Comput. Harmon. Anal. 62 84–122.
  • Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics 61. SIAM, Philadelphia, PA.
  • DAUBECHIES, I., LU, J. and WU, H.-T. (2011). Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30 243–261.
  • DAUBECHIES, I., WANG, Y. and WU, H. (2016). ConceFT: Concentration of frequency and time via a multitapered synchrosqueezed transform. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 374 20150193, 19.
  • FAN, J. and YAO, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer Series in Statistics. Springer, New York.
  • FLANDRIN, P. (1999). Time-Frequency/Time-Scale Analysis. Wavelet Analysis and Its Applications 10. Academic Press, San Diego, CA.
  • GABOR, D. (1946). Theory of communication. Part 1: The analysis of information. J. Inst. Electr. Eng., 3 93 429–441.
  • GEL’FAND, I. M. and VILENKIN, N. YA. (1964). Generalized Functions. Vol. 4: Applications of Harmonic Analysis. Academic Press, New York.
  • HALLIN, M. (1978). Mixed autoregressive-moving average multivariate processes with time-dependent coefficients. J. Multivariate Anal. 8 567–572.
  • HAMILTON, J. D. (1994). Time Series Analysis. Princeton Univ. Press, Princeton, NJ.
  • HUANG, N. E., SHEN, Z., LONG, S. R., WU, M. C., SHIH, H. H., ZHENG, Q., YEN, N.-C., TUNG, C. C. and LIU, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454 903–995.
  • HUANG, Z., ZHANG, J., ZHAO, T. and SUN, Y. (2015). Synchrosqueezing s-transform and its application in seismic spectral decomposition. IEEE Trans. Geosci. Remote Sens. PP(99) 1–9.
  • KODERA, K., VILLEDARY, C. D. and GENDRIN, R. (1976). A new method for the numerical analysis of non-stationary signals. Phys. Earth Planet. Inter. 12 142–150.
  • KORALOV, L. B. and SINAI, Y. G. (2007). Theory of Probability and Random Processes, 2nd ed. Universitext. Springer, Berlin.
  • KREUTZ-DELGADO, K. (2009). The complex gradient operator and the CR-calculus. ArXiv e-prints.
  • LEBEDEV, N. N. and SILVERMAN, R. A. (1972). Special Functions & Their Applications. Dover Books on Mathematics, Dover.
  • LIN, C.-Y., SU, L. and WU, H.-T. (2018). Wave-shape function analysis: When cepstrum meets time-frequency analysis. J. Fourier Anal. Appl. 24 451–505.
  • OBERLIN, T., MEIGNEN, S. and PERRIER, V. (2015). Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations. IEEE Trans. Signal Process. 63 1335–1344.
  • PHAM-GIA, T., TURKKAN, N. and MARCHAND, E. (2006). Density of the ratio of two normal random variables and applications. Comm. Statist. Theory Methods 35 1569–1591.
  • PICINBONO, B. (1997). On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45 552–560.
  • PRIESTLEY, M. (1967). Power spectral analysis of non-stationary random processes. J. Sound Vib. 6 86–97.
  • PRIESTLEY, M. B. (1981). Spectral Analysis and Time Series. Vol. 1. Probability and Mathematical Statistics. Academic Press, London-New York.
  • Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 43–47.
  • SCHREIER, P. J. and SCHARF, L. L. (2010). Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals. Cambridge Univ. Press, Cambridge.
  • SOURISSEAU, M., WU, H.-T and ZHOU, Z. (2022). Supplement to “Asymptotic analysis of synchrosqueezing transform—toward statistical inference with nonlinear-type time-frequency analysis.” https://doi.org/10.1214/22-AOS2203SUPP
  • THAKUR, G., BREVDO, E., FUCKAR, N. S. and WU, H.-T. (2013). The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications. Signal Process. 93 1079–1094.
  • THAKUR, G. and WU, H.-T. (2011). Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM J. Math. Anal. 43 2078–2095.
  • WU, H. (2013). Instantaneous frequency and wave shape functions (I). Appl. Comput. Harmon. Anal. 35 181–199.
  • WU, H.-T. (2020). Current state of nonlinear-type time–frequency analysis and applications to high-frequency biomedical signals. Curr. Opin. Syst. Biol. 23 8–21.
  • Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150–14154.
  • XIAO, H. and WU, W. B. (2012). Covariance matrix estimation for stationary time series. Ann. Statist. 40 466–493.
  • XIAO, J. and FLANDRIN, P. (2007). Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement. IEEE Trans. Signal Process. 55 2851–2860.
  • YANG, H. (2015). Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions. Appl. Comput. Harmon. Anal. 39 33–66.
  • YANG, H. (2018). Statistical analysis of synchrosqueezed transforms. Appl. Comput. Harmon. Anal. 45 526–550.
  • YANG, J. and ZHOU, Z. (2022). Spectral inference under complex temporal dynamics. J. Amer. Statist. Assoc. 117 133–155.
  • Zhou, Z. (2013). Heteroscedasticity and autocorrelation robust structural change detection. J. Amer. Statist. Assoc. 108 726–740.
JOURNAL ARTICLE
19 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.50 • No. 5 • October 2022
Back to Top