Open Access
June 2019 Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data
Yuta Koike
Ann. Statist. 47(3): 1663-1687 (June 2019). DOI: 10.1214/18-AOS1731
Abstract

This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener–Itô integrals with common orders is well approximated by its Gaussian analog in terms of the Kolmogorov distance if their covariance matrices are close to each other and the maximum of the fourth cumulants of the multiple Wiener–Itô integrals is close to zero. This may be viewed as a new kind of fourth moment phenomenon, which has attracted considerable attention in the recent studies of probability. This type of Gaussian approximation result has many potential applications to statistics. To illustrate this point, we present two statistical applications in high-frequency financial econometrics: One is the hypothesis testing problem for the absence of lead-lag effects and the other is the construction of uniform confidence bands for spot volatility.

References

1.

[1] Aït-Sahalia, Y. and Jacod, J. (2014). High-Frequency Financial Econometrics. Princeton Univ. Press, Princeton, NJ. 1298.91018[1] Aït-Sahalia, Y. and Jacod, J. (2014). High-Frequency Financial Econometrics. Princeton Univ. Press, Princeton, NJ. 1298.91018

2.

[2] Alvarez, A., Panloup, F., Pontier, M. and Savy, N. (2012). Estimation of the instantaneous volatility. Stat. Inference Stoch. Process. 15 27–59. 1243.62129 10.1007/s11203-011-9062-2[2] Alvarez, A., Panloup, F., Pontier, M. and Savy, N. (2012). Estimation of the instantaneous volatility. Stat. Inference Stoch. Process. 15 27–59. 1243.62129 10.1007/s11203-011-9062-2

3.

[3] Andersen, T. G., Bollerslev, T. and Dobrev, D. (2007). No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications. J. Econometrics 138 125–180. 06577508 10.1016/j.jeconom.2006.05.018[3] Andersen, T. G., Bollerslev, T. and Dobrev, D. (2007). No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications. J. Econometrics 138 125–180. 06577508 10.1016/j.jeconom.2006.05.018

4.

[4] Bennedsen, M., Hounyo, U., Lunde, A. and Pakkanen, M. S. (2016). The local fractional bootstrap. Working paper. Available at  https://arxiv.org/abs/1605.00868.[4] Bennedsen, M., Hounyo, U., Lunde, A. and Pakkanen, M. S. (2016). The local fractional bootstrap. Working paper. Available at  https://arxiv.org/abs/1605.00868.

5.

[5] Bibinger, M., Jirak, M. and Vetter, M. (2017). Nonparametric change-point analysis of volatility. Ann. Statist. 45 1542–1578. 06773283 10.1214/16-AOS1499 euclid.aos/1498636866[5] Bibinger, M., Jirak, M. and Vetter, M. (2017). Nonparametric change-point analysis of volatility. Ann. Statist. 45 1542–1578. 06773283 10.1214/16-AOS1499 euclid.aos/1498636866

6.

[6] Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Heidelberg.[6] Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Heidelberg.

7.

[7] Chang, J., Qiu, Y., Yao, Q. and Zou, T. (2017). On the statistical inference for large precision matrices with dependent data. Working paper. Available at  https://arxiv.org/abs/1603.06663.[7] Chang, J., Qiu, Y., Yao, Q. and Zou, T. (2017). On the statistical inference for large precision matrices with dependent data. Working paper. Available at  https://arxiv.org/abs/1603.06663.

8.

[8] Chen, X. (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist. 46 642–678. 1396.62019 10.1214/17-AOS1563 euclid.aos/1522742432[8] Chen, X. (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications. Ann. Statist. 46 642–678. 1396.62019 10.1214/17-AOS1563 euclid.aos/1522742432

9.

[9] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786–2819. 1292.62030 10.1214/13-AOS1161 euclid.aos/1387313390[9] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786–2819. 1292.62030 10.1214/13-AOS1161 euclid.aos/1387313390

10.

[10] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Anti-concentration and honest, adaptive confidence bands. Ann. Statist. 42 1787–1818. 1305.62161 10.1214/14-AOS1235 euclid.aos/1410440625[10] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Anti-concentration and honest, adaptive confidence bands. Ann. Statist. 42 1787–1818. 1305.62161 10.1214/14-AOS1235 euclid.aos/1410440625

11.

[11] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Gaussian approximation of suprema of empirical processes. Ann. Statist. 42 1564–1597. 1317.60038 10.1214/14-AOS1230 euclid.aos/1407420009[11] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Gaussian approximation of suprema of empirical processes. Ann. Statist. 42 1564–1597. 1317.60038 10.1214/14-AOS1230 euclid.aos/1407420009

12.

[12] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Testing many moment inequalities. Working paper. Available at  https://arxiv.org/abs/1312.7614v4.[12] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Testing many moment inequalities. Working paper. Available at  https://arxiv.org/abs/1312.7614v4.

13.

[13] Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Probab. Theory Related Fields 162 47–70. 1319.60072 10.1007/s00440-014-0565-9[13] Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Probab. Theory Related Fields 162 47–70. 1319.60072 10.1007/s00440-014-0565-9

14.

[14] Chernozhukov, V., Chetverikov, D. and Kato, K. (2016). Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings. Stochastic Process. Appl. 126 3632–3651. 1351.60035 10.1016/j.spa.2016.04.009[14] Chernozhukov, V., Chetverikov, D. and Kato, K. (2016). Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings. Stochastic Process. Appl. 126 3632–3651. 1351.60035 10.1016/j.spa.2016.04.009

15.

[15] Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Central limit theorems and bootstrap in high dimensions. Ann. Probab. 45 2309–2352. 1377.60040 10.1214/16-AOP1113 euclid.aop/1502438428[15] Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Central limit theorems and bootstrap in high dimensions. Ann. Probab. 45 2309–2352. 1377.60040 10.1214/16-AOP1113 euclid.aop/1502438428

16.

[16] Christensen, K., Oomen, R. and Renò, R. (2016). The drift burst hypothesis. Available at  https://ssrn.com/abstract=2842535.[16] Christensen, K., Oomen, R. and Renò, R. (2016). The drift burst hypothesis. Available at  https://ssrn.com/abstract=2842535.

17.

[17] Dalalyan, A. and Yoshida, N. (2011). Second-order asymptotic expansion for a non-synchronous covariation estimator. Ann. Inst. Henri Poincaré Probab. Stat. 47 748–789. 1328.62511 10.1214/10-AIHP383 euclid.aihp/1308834858[17] Dalalyan, A. and Yoshida, N. (2011). Second-order asymptotic expansion for a non-synchronous covariation estimator. Ann. Inst. Henri Poincaré Probab. Stat. 47 748–789. 1328.62511 10.1214/10-AIHP383 euclid.aihp/1308834858

18.

[18] Davidson, R. and Flachaire, E. (2008). The wild bootstrap, tamed at last. J. Econometrics 146 162–169. 06592951 10.1016/j.jeconom.2008.08.003[18] Davidson, R. and Flachaire, E. (2008). The wild bootstrap, tamed at last. J. Econometrics 146 162–169. 06592951 10.1016/j.jeconom.2008.08.003

19.

[19] Davidson, R. and MacKinnon, J. G. (1999). The size distortion of bootstrap tests. Econometric Theory 15 361–376. 0963.62025 10.1017/S0266466699153040[19] Davidson, R. and MacKinnon, J. G. (1999). The size distortion of bootstrap tests. Econometric Theory 15 361–376. 0963.62025 10.1017/S0266466699153040

20.

[20] Fan, J. and Wang, Y. (2008). Spot volatility estimation for high-frequency data. Stat. Interface 1 279–288. 1230.91192 10.4310/SII.2008.v1.n2.a5[20] Fan, J. and Wang, Y. (2008). Spot volatility estimation for high-frequency data. Stat. Interface 1 279–288. 1230.91192 10.4310/SII.2008.v1.n2.a5

21.

[21] Götze, F. and Tikhomirov, A. N. (1999). Asymptotic distribution of quadratic forms. Ann. Probab. 27 1072–1098. 0941.60049 10.1214/aop/1022677395 euclid.aop/1022677395[21] Götze, F. and Tikhomirov, A. N. (1999). Asymptotic distribution of quadratic forms. Ann. Probab. 27 1072–1098. 0941.60049 10.1214/aop/1022677395 euclid.aop/1022677395

22.

[22] Hayashi, T. and Koike, Y. (2016). Wavelet-based methods for high-frequency lead-lag analysis. Working paper. Available at  https://arxiv.org/abs/1612.01232.[22] Hayashi, T. and Koike, Y. (2016). Wavelet-based methods for high-frequency lead-lag analysis. Working paper. Available at  https://arxiv.org/abs/1612.01232.

23.

[23] Hayashi, T. and Yoshida, N. (2005). On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 11 359–379. 1064.62091 10.3150/bj/1116340299 euclid.bj/1116340299[23] Hayashi, T. and Yoshida, N. (2005). On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 11 359–379. 1064.62091 10.3150/bj/1116340299 euclid.bj/1116340299

24.

[24] Hoffmann, M., Rosenbaum, M. and Yoshida, N. (2013). Estimation of the lead-lag parameter from non-synchronous data. Bernoulli 19 426–461. 06168759 10.3150/11-BEJ407 euclid.bj/1363192034[24] Hoffmann, M., Rosenbaum, M. and Yoshida, N. (2013). Estimation of the lead-lag parameter from non-synchronous data. Bernoulli 19 426–461. 06168759 10.3150/11-BEJ407 euclid.bj/1363192034

25.

[25] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge Univ. Press, Cambridge. 0887.60009[25] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge Univ. Press, Cambridge. 0887.60009

26.

[26] Kanaya, S. (2017). Uniform convergence rates of kernel-based nonparametric estimators for continuous time diffusion processes: A damping function approach. Econometric Theory 33 874–914. MR3667040 06775288 10.1017/S0266466616000219[26] Kanaya, S. (2017). Uniform convergence rates of kernel-based nonparametric estimators for continuous time diffusion processes: A damping function approach. Econometric Theory 33 874–914. MR3667040 06775288 10.1017/S0266466616000219

27.

[27] Kanaya, S. and Kristensen, D. (2016). Estimation of stochastic volatility models by nonparametric filtering. Econometric Theory 32 861–916. 06639302 10.1017/S0266466615000079[27] Kanaya, S. and Kristensen, D. (2016). Estimation of stochastic volatility models by nonparametric filtering. Econometric Theory 32 861–916. 06639302 10.1017/S0266466615000079

28.

[28] Kato, K. and Kurisu, D. (2017). Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations. Working paper. Available at  https://arxiv.org/abs/1705.00586.[28] Kato, K. and Kurisu, D. (2017). Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations. Working paper. Available at  https://arxiv.org/abs/1705.00586.

29.

[29] Kato, K. and Sasaki, Y. (2016). Uniform confidence bands in deconvolution with unknown error distribution. Working paper. Available at  https://arxiv.org/abs/1608.0225106952486 10.1016/j.jeconom.2018.07.001[29] Kato, K. and Sasaki, Y. (2016). Uniform confidence bands in deconvolution with unknown error distribution. Working paper. Available at  https://arxiv.org/abs/1608.0225106952486 10.1016/j.jeconom.2018.07.001

30.

[30] Koike, Y. (2019). Supplement to “Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data.”  DOI:10.1214/18-AOS1731SUPP.[30] Koike, Y. (2019). Supplement to “Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data.”  DOI:10.1214/18-AOS1731SUPP.

31.

[31] Kristensen, D. (2010). Nonparametric filtering of the realized spot volatility: A kernel-based approach. Econometric Theory 26 60–93. 1183.91189 10.1017/S0266466609090616[31] Kristensen, D. (2010). Nonparametric filtering of the realized spot volatility: A kernel-based approach. Econometric Theory 26 60–93. 1183.91189 10.1017/S0266466609090616

32.

[32] Kusuoka, S. and Yoshida, N. (2000). Malliavin calculus, geometric mixing, and expansion of diffusion functionals. Probab. Theory Related Fields 116 457–484. 0970.60061 10.1007/s004400070001[32] Kusuoka, S. and Yoshida, N. (2000). Malliavin calculus, geometric mixing, and expansion of diffusion functionals. Probab. Theory Related Fields 116 457–484. 0970.60061 10.1007/s004400070001

33.

[33] Lee, S. S. and Mykland, P. A. (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. Rev. Financ. Stud. 21 2535–2563.[33] Lee, S. S. and Mykland, P. A. (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. Rev. Financ. Stud. 21 2535–2563.

34.

[34] Mancino, M. E. and Recchioni, M. C. (2015). Fourier spot volatility estimator: Asymptotic normality and efficiency with liquid and illiquid high-frequency data. PLoS ONE 10 1–33.[34] Mancino, M. E. and Recchioni, M. C. (2015). Fourier spot volatility estimator: Asymptotic normality and efficiency with liquid and illiquid high-frequency data. PLoS ONE 10 1–33.

35.

[35] Mossel, E., O’Donnell, R. and Oleszkiewicz, K. (2010). Noise stability of functions with low influences: Invariance and optimality. Ann. of Math. (2) 171 295–341. 1201.60031 10.4007/annals.2010.171.295[35] Mossel, E., O’Donnell, R. and Oleszkiewicz, K. (2010). Noise stability of functions with low influences: Invariance and optimality. Ann. of Math. (2) 171 295–341. 1201.60031 10.4007/annals.2010.171.295

36.

[36] Mykland, P. A. and Zhang, L. (2008). Inference for volatility-type objects and implications for hedging. Stat. Interface 1 255–278. MR2476743 1230.91197 10.4310/SII.2008.v1.n2.a4[36] Mykland, P. A. and Zhang, L. (2008). Inference for volatility-type objects and implications for hedging. Stat. Interface 1 255–278. MR2476743 1230.91197 10.4310/SII.2008.v1.n2.a4

37.

[37] Nourdin, I. (2013). Lectures on Gaussian approximations with Malliavin calculus. In Séminaire de Probabilités XLV (C. Donati-Martin, A. Lejay and A. Rouault, eds.). Lecture Notes in Math. 2078 3–89. Springer, Cham. MR3185909[37] Nourdin, I. (2013). Lectures on Gaussian approximations with Malliavin calculus. In Séminaire de Probabilités XLV (C. Donati-Martin, A. Lejay and A. Rouault, eds.). Lecture Notes in Math. 2078 3–89. Springer, Cham. MR3185909

38.

[38] Nourdin, I. and Peccati, G. (2009). Stein’s method on Wiener chaos. Probab. Theory Related Fields 145 75–118. 1175.60053 10.1007/s00440-008-0162-x[38] Nourdin, I. and Peccati, G. (2009). Stein’s method on Wiener chaos. Probab. Theory Related Fields 145 75–118. 1175.60053 10.1007/s00440-008-0162-x

39.

[39] Nourdin, I. and Peccati, G. (2010). Stein’s method meets Malliavin calculus: A short survey with new estimates. In Recent Development in Stochastic Dynamics and Stochastic Analysis (J. Duan, S. Luo and C. Wang, eds.). Interdiscip. Math. Sci. 8 207–236. World Sci. Publ., Hackensack, NJ. 1203.60065[39] Nourdin, I. and Peccati, G. (2010). Stein’s method meets Malliavin calculus: A short survey with new estimates. In Recent Development in Stochastic Dynamics and Stochastic Analysis (J. Duan, S. Luo and C. Wang, eds.). Interdiscip. Math. Sci. 8 207–236. World Sci. Publ., Hackensack, NJ. 1203.60065

40.

[40] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge Univ. Press, Cambridge. MR2962301 1266.60001[40] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge Univ. Press, Cambridge. MR2962301 1266.60001

41.

[41] Nourdin, I., Peccati, G. and Reinert, G. (2009). Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 257 593–609. 1186.60047 10.1016/j.jfa.2008.12.017[41] Nourdin, I., Peccati, G. and Reinert, G. (2009). Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 257 593–609. 1186.60047 10.1016/j.jfa.2008.12.017

42.

[42] Nourdin, I., Peccati, G. and Reinert, G. (2010). Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos. Ann. Probab. 38 1947–1985. 1246.60039 10.1214/10-AOP531 euclid.aop/1282053777[42] Nourdin, I., Peccati, G. and Reinert, G. (2010). Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos. Ann. Probab. 38 1947–1985. 1246.60039 10.1214/10-AOP531 euclid.aop/1282053777

43.

[43] Nourdin, I., Peccati, G. and Réveillac, A. (2010). Multivariate normal approximation using Stein’s method and Malliavin calculus. Ann. Inst. Henri Poincaré Probab. Stat. 46 45–58.[43] Nourdin, I., Peccati, G. and Réveillac, A. (2010). Multivariate normal approximation using Stein’s method and Malliavin calculus. Ann. Inst. Henri Poincaré Probab. Stat. 46 45–58.

44.

[44] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin. 1099.60003[44] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin. 1099.60003

45.

[45] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177–193. 1097.60007 10.1214/009117904000000621 euclid.aop/1108141724[45] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177–193. 1097.60007 10.1214/009117904000000621 euclid.aop/1108141724

46.

[46] Palmes, C. and Woerner, J. H. C. (2016). A mathematical analysis of the Gumbel test for jumps in stochastic volatility models. Stoch. Anal. Appl. 34 852–881. 1351.62101 10.1080/07362994.2016.1182870[46] Palmes, C. and Woerner, J. H. C. (2016). A mathematical analysis of the Gumbel test for jumps in stochastic volatility models. Stoch. Anal. Appl. 34 852–881. 1351.62101 10.1080/07362994.2016.1182870

47.

[47] Robert, C. Y. and Rosenbaum, M. (2010). On the limiting spectral distribution of the covariance matrices of time-lagged processes. J. Multivariate Anal. 101 2434–2451. 1202.15037 10.1016/j.jmva.2010.06.014[47] Robert, C. Y. and Rosenbaum, M. (2010). On the limiting spectral distribution of the covariance matrices of time-lagged processes. J. Multivariate Anal. 101 2434–2451. 1202.15037 10.1016/j.jmva.2010.06.014

48.

[48] Sabel, T. (2014). Simultaneous confidence statements about the diffusion coefficient of an Itô-process with application to spot volatility estimation. Ph.D. thesis, Georg-August Univ. School of Science.[48] Sabel, T. (2014). Simultaneous confidence statements about the diffusion coefficient of an Itô-process with application to spot volatility estimation. Ph.D. thesis, Georg-August Univ. School of Science.

49.

[49] Söhl, J. and Trabs, M. (2016). Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift. ESAIM Probab. Stat. 20 432–462. MR3581829 1357.62198 10.1051/ps/2016017[49] Söhl, J. and Trabs, M. (2016). Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift. ESAIM Probab. Stat. 20 432–462. MR3581829 1357.62198 10.1051/ps/2016017

50.

[50] Zhang, D. and Wu, W. B. (2017). Gaussian approximation for high dimensional time series. Ann. Statist. 45 1895–1919. MR3718156 1381.62254 10.1214/16-AOS1512 euclid.aos/1509436822[50] Zhang, D. and Wu, W. B. (2017). Gaussian approximation for high dimensional time series. Ann. Statist. 45 1895–1919. MR3718156 1381.62254 10.1214/16-AOS1512 euclid.aos/1509436822

51.

[51] Zhang, X. and Cheng, G. (2018). Gaussian approximation for high dimensional vector under physical dependence. Bernoulli 24 2640–2675. 06853260 10.3150/17-BEJ939 euclid.bj/1522051220[51] Zhang, X. and Cheng, G. (2018). Gaussian approximation for high dimensional vector under physical dependence. Bernoulli 24 2640–2675. 06853260 10.3150/17-BEJ939 euclid.bj/1522051220
Copyright © 2019 Institute of Mathematical Statistics
Yuta Koike "Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data," The Annals of Statistics 47(3), 1663-1687, (June 2019). https://doi.org/10.1214/18-AOS1731
Received: 1 September 2017; Published: June 2019
Vol.47 • No. 3 • June 2019
Back to Top