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GAUSSIAN APPROXIMATION OF MAXIMA OF WIENER
FUNCTIONALS AND ITS APPLICATION TO

HIGH-FREQUENCY DATA1

BY YUTA KOIKE

University of Tokyo and JST CREST

This paper establishes an upper bound for the Kolmogorov distance be-
tween the maximum of a high-dimensional vector of smooth Wiener func-
tionals and the maximum of a Gaussian random vector. As a special case, we
show that the maximum of multiple Wiener–Itô integrals with common or-
ders is well approximated by its Gaussian analog in terms of the Kolmogorov
distance if their covariance matrices are close to each other and the maxi-
mum of the fourth cumulants of the multiple Wiener–Itô integrals is close
to zero. This may be viewed as a new kind of fourth moment phenomenon,
which has attracted considerable attention in the recent studies of probability.
This type of Gaussian approximation result has many potential applications
to statistics. To illustrate this point, we present two statistical applications in
high-frequency financial econometrics: One is the hypothesis testing problem
for the absence of lead-lag effects and the other is the construction of uniform
confidence bands for spot volatility.

1. Introduction. This study is originally motivated by the problem of testing
whether there exists a (possibly) time-lagged correlation between two Brownian
motions based on their high-frequency observation data. Roughly speaking, the
setting considered here is described as follows. We discretely observe the follow-
ing two continuous-time processes on the interval [0, T ]:
(1.1) X1

t = x1
0 + σ1B

1
t , X2

t = x2
0 + σ2B

2
t−ϑ, t ∈ [0, T ],

where x1
0 , x2

0 ∈R, σ1, σ2 > 0, Bt = (B1
t ,B2

t ) (t ∈ R) is a bivariate two-sided Brow-
nian motion with correlation ρ ∈ (−1,1) and ϑ ∈ R. For each ν = 1,2, the process
Xν is observed at the time points 0 ≤ tν0 < tν1 < · · · < tνnν

≤ T , hence the observa-
tion times are possibly nonsynchronous. Based on the observation data (X1

t1
i

)
n1
i=0

and (X2
t2
j

)
n2
j=0, we aim at solving the following statistical hypothesis testing prob-

lem:

(1.2) H0 : ρ = 0 vs H1 : ρ �= 0.
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Model (1.1) was introduced in Hoffmann, Rosenbaum and Yoshida [24] (as a
more general one) to model lead-lag effects in high-frequency financial data (see
also [47]). In [24], the problem of estimating the time-lag parameter ϑ is consid-
ered. To estimate ϑ , Hoffmann, Rosenbaum and Yoshida [24] have introduced the
following contrast function:

Un(θ) =∑
i,j

(
X1

t1
i

− X1
t1
i−1

)(
X2

t2
j

− X2
t2
j−1

)
1{(t1

i−1,t
1
i ]∩(t2

j−1−θ,t2
j −θ ]�=∅}.

Un(θ) could be considered as the (sample) cross-covariance function between the
returns of X1 and X2 at the lag θ computed by Hayashi and Yoshida’s [23] method.
Hoffmann, Rosenbaum and Yoshida [24] have shown that

ϑ̂n = arg max
θ∈Gn

∣∣Un(θ)
∣∣

is a consistent estimator for ϑ under some regularity conditions while one appro-
priately takes the finite set Gn as long as ρ �= 0. The condition ρ �= 0 is necessary
because it is clearly impossible to identify the parameter ϑ if ρ = 0. Therefore, un-
less we can believe ρ �= 0 due to some external information, we need to reject the
null hypothesis in the above testing problem before we carry out estimation of ϑ .
A natural approach to solve testing problem (1.2) is to reject the null hypothesis
if the value of maxθ∈Gn |Un(θ)| is too large. To implement this idea precisely, we
need to derive or approximate the distribution of maxθ∈Gn |Un(θ)| under the null
hypothesis H0. One main purpose of this paper is to give an answer to this prob-
lem. More generally, we consider the problem of approximating the distributions
of maximum-type statistics appearing in high-frequency financial econometrics.
Indeed, we encounter such statistics in many problems of high-frequency finan-
cial econometrics, for example, construction of uniform confidence bands for spot
volatility and other time-varying characteristics, family-wise error rate control for
testing at many time points (cf. [3, 16]), change point analysis of volatility (cf. [5]),
testing the absence of jumps (cf. [33, 46]) and so on.

From a mathematical point of view, this paper is built on two recent stud-
ies developed in different areas. The first one is the seminal work of Cher-
nozhukov, Chetverikov and Kato [9, 11, 13, 14] which we call the Chernozhukov–
Chetverikov–Kato theory, or the CCK theory for short. One main conclusion from
the CCK theory is a bound for the Kolmogorov distance between the distributions
of the maximum of a (high-dimensional) random vector and that of a Gaussian
vector, which has an apparent connection to our purpose. However, their result is
not directly applicable to our problem because their target random vector is a sum
of independent random vectors [9, 11, 14] or Gaussian [13, 14]. In fact, one of our
main target random vectors, (Un(θ))θ∈Gn , is a sum of dependent random vectors
even under the null hypothesis where the dependence is caused by the nonsyn-
chronicity of the observation times. Although there are several extensions of the
CCK theory to a sum of dependent random vectors (see, e.g., [7, 8, 12, 50, 51]),
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it still seems difficult to apply such a result to our problem because the nonsyn-
chronicity causes a quite complex, “nonstationary,” dependence structure. In this
aspect, this paper aims at extending the CCK theory suitably to our purpose, and
our results indeed generalize several results of [13]. In particular, our results do not
require that the target random vector should be written as a sum of random vectors
and give a simpler bound than those of the preceding studies listed above.

It turns out that in the CCK theory the independence/Gaussianity assumption on
the target vector is crucial for the application of Stein’s method.2 In other words,
we can naturally extend the CCK theory to a case without independence as long as
Stein’s method is effectively applicable. This viewpoint leads us to using another
important theory for this work, Malliavin calculus, in our problem. In fact, starting
from the seminal work of Nourdin and Peccati [38], the recent studies show that
“Stein’s method and Malliavin calculus fit together admirably well” (page 3 of
Nourdin [37]). This paper shows that this statement continues to hold true in the
application to the CCK theory. Our application of Malliavin calculus is based on a
multivariate extension of the ideas from [38], which is established in [43] (see also
[39]). We refer to the monograph [40] for more information about this subject.

After developing the main Gaussian approximation results, we turn to the orig-
inal problem of statistical applications in high-frequency data. In this paper, we
demonstrate two applications: One is testing the absence of lead-lag effects and
the other is constructing uniform confidence bands for spot volatility. We have al-
ready explained the background of the former problem in the above, so we briefly
discuss the latter one. Estimation of spot volatility is one of major topics in high-
frequency financial econometrics (see Chapter 8 of [1] and references therein).
There are quite a few articles concerning construction of pointwise confidence
bands for spot volatility; see, for example, [2, 31, 34, 36]. In contrast, only a few
results are available on the behavior of uniform errors in spot volatility estima-
tion: Kristensen [31] and [27] give uniform convergence rates for kernel-type spot
volatility estimators, while Fan and Wang [20] consider a Gumbel approxima-
tion for the distribution of uniform errors of kernel-type spot volatility estimators.
Besides, Sabel [48] implements multiscale inference for spot volatility via KMT
construction. This paper contributes this relatively undeveloped areas by provid-
ing a new approach to construct uniform confidence bands for spot volatility in the
spirit of the CCK theory: Construction of uniform confidence bands is a typical
application of the CCK theory; cf. [10, 28, 29].

In the first application, the Gaussian approximation itself is still statistically in-
feasible because the covariance structure of the objective statistics is unknown.
For this reason we also develop a wild (or multiplier) bootstrap procedure to ap-
proximate the quantiles of the error distribution of the test statistic, which is the

2The independence assumption also plays a role in deriving maximal moment inequalities, but this
issue may be considered separately.
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approach taken in the CCK theory. The Gaussian approximation result serves as
validating such a bootstrap procedure.

The remainder of this paper is organized as follows. Section 2 presents the main
Gaussian approximation results obtained in this study. In Section 3, we derive
Gaussian approximation results for maxima of random symmetric quadratic forms
as an application of the main results. We present two statistical applications of
our results in high-frequency financial econometrics in Section 4. We especially
propose a testing procedure for (1.2). The finite sample performance of this testing
procedure is illustrated in Section 5. We put most technical parts of the paper in
the Supplementary Material [30]: Appendix A collects the preliminary definitions
and results used in Appendix B, which contains proofs of all the results presented
in the main text of the paper.

Notation. Throughout the paper, C = (C(i, j))1≤i,j≤d denotes a d×d nonneg-
ative definite symmetric matrix, and Z = (Z1, . . . ,Zd)� denotes a d-dimensional
centered Gaussian random vector with covariance matrix C. For a vector x =
(x1, . . . , xd)� ∈ R

d , we write x∨ = max1≤j≤d xj . For any ε > 0 and any subset
A of R, we write Aε = {x ∈ R : |x − y| ≤ ε for some y ∈ A}. For a real-valued
function f defined on an interval I ⊂ R and η > 0, we write ‖f ‖∞ = sup{|f (x)| :
x ∈ I } and w(f ;η) = sup{|f (s) − f (t)| : s, t ∈ I, |s − t | ≤ η}. For a random vari-
able ξ and p ≥ 1, we write ‖ξ‖p = {E[|ξ |p]}1/p . For a matrix A, we denote by
‖A‖sp and ‖A‖F its spectral norm and Frobenius norm, respectively.

Finally, we enumerate the notation from Malliavin calculus which are necessary
to state our main results. We refer to [25, 40, 44] for a detailed description of
Malliavin calculus. Also, see Section A.1 of Appendix A for a concise overview
of the notions from Malliavin calculus used in this paper.

• Throughout the paper, H denotes a real separable Hilbert space. The inner prod-
uct and the norm of H are denoted by 〈·, ·〉H and ‖ · ‖H , respectively.

• We assume that an isonormal Gaussian process W = (W(h))h∈H over H de-
fined on a probability space (
,F,P ) is given. We denote by L2(W) the space
L2(
,σ(W),P ) for short.

• For a nonnegative integer q , H⊗q and H�q denote the qth tensor power and qth
symmetric tensor power, respectively.

• For an element f ∈ H�q , we denote by Iq(f ) the qth multiple Wiener–Itô in-
tegral of f .

• For any real number p ≥ 1 and any integer k ≥ 1, Dk,p denotes the stochastic
Sobolev space of random variables which are k times differentiable in the Malli-
avin sense and the derivatives up to order k have finite moments of order p. If
F ∈ Dk,p , we denote by DkF the kth Malliavin derivative of F . We write DF

instead of D1F for short.
• L denotes the Ornstein–Uhlenbeck operator. Also, the pseudo inverse of L is

denoted by L−1.
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2. Main results. Throughout this section, F = (F1, . . . ,Fd)� denotes a d-
dimensional random vector such that Fj ∈ D1,2 and E[Fj ] = 0 for all j = 1, . . . , d .
For each β > 0, we define the function �β : Rd →R by

�β(x) = β−1 log

(
d∑

j=1

eβxj

) (
x = (x1, . . . , xd)� ∈ R

d).
Equation (1) from [13] states that

(2.1) 0 ≤ �β(x) − x∨ ≤ β−1 logd

for any x ∈R
d .

We first give a generalization of Theorem 1 from [13] as follows.

PROPOSITION 2.1. Let g : R → R be a C2 function with bounded first and
second derivatives. Then, for any β > 0 we have∣∣E[g(�β(F)

)]− E
[
g
(
�β(Z)

)]∣∣≤ (∥∥g′′∥∥∞/2 + β
∥∥g′∥∥∞),

where

 = E
[

max
1≤i,j≤d

∣∣C(i, j) − 〈DFi,−DL−1Fj

〉
H

∣∣].
In particular, it holds that∣∣E[g(F∨)

]− E
[
g(Z∨)

]∣∣≤ (∥∥g′′∥∥∞/2 + β
∥∥g′∥∥∞) + 2β−1∥∥g′∥∥∞ logd.

REMARK 2.1. We can indeed derive Theorem 1 of [13] from Proposition 2.1
in the following way. Suppose that the law of F is the d-dimensional normal dis-
tribution with mean 0 and covariance matrix � = (�(i, j))1≤i,j≤d . Without loss
of generality, we may assume that F is expressed as F = �1/2G with G being a d-
dimensional standard Gaussian vector. Then we can define the isonormal Gaussian
process W over H := R

d by W(h) = h�G, h ∈ H (cf. Example 2.1.3 of [40]), and
we have Fi =∑d

j=1 γijW(ej ) for every i = 1, . . . , d , where γij denotes the (i, j)th

component of the matrix �1/2 and (e1, . . . , ed) denotes the canonical basis of Rd .
In this case, it holds that

〈
DFi,−DL−1Fj

〉
H =

d∑
k,l=1

γikγjl〈ek, el〉H =
d∑

k=1

γikγjk = �(i, j),

hence we obtain the conclusion of Theorem 1 from [13].

Proposition 2.1 and some elementary approximation arguments lead the follow-
ing useful lemma.
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LEMMA 2.1. There is a universal constant C > 0 such that

P(F∨ ∈ A) ≤ P
(
Z∨ ∈ A5ε)+ Cε−2(logd)

for any Borel set A of R and any ε > 0.

REMARK 2.2. Lemma 2.1 is useful when we derive a Gaussian approximation
for the supremum of statistics indexed by an infinite set (see Proposition 4.3 and its
proof). In fact, Lemma 2.1 can be considered as a counterpart of Theorem 3.1 from
[14], which is used to derive their Gaussian approximation results for suprema of
empirical processes. An advantage of Lemma 2.1 over Theorem 3.1 from [14] is
that the second term of the estimate is proportional to ε−2 in Lemma 2.1, while it
is proportional to ε−3 in Theorem 3.1 from [14]. This difference generally leads
a weaker condition and a better convergence rate in Gaussian approximation; see
Remark 4.8 for details.

Combining Lemma 2.1 with several technical tools developed in the CCK the-
ory, we obtain the following main result of this paper, which can be considered as
a generalization of Theorem 2 from [13].

THEOREM 2.1. (a) Suppose that d ≥ 2 and there are constants σ ,σ > 0
such that σ 2 ≤ C(j, j) ≤ σ 2 for all j = 1, . . . , d . Set ad = E[max1≤j≤d(Zj/√
C(j, j))]. Then

(2.2) sup
x∈R

∣∣P(F∨ ≤ x) − P(Z∨ ≤ x)
∣∣≤ C1/3{1 ∨ a2

d ∨ log(1/)
}1/3

(logd)1/3,

where C > 0 depends only on σ and σ (the right-hand side is understood to be 0
if  = 0).

(b) Suppose that d ≥ 2 and there is a constant b > 0 such that C(j, j) ≥ b for
all j = 1, . . . , d . Then

(2.3) sup
x∈R

∣∣P(F∨ ≤ x) − P(Z∨ ≤ x)
∣∣≤ C′1/3(logd)2/3,

where C′ > 0 depends only on b.

Since we have max1≤j≤d |xj | = max{max1≤j≤d xj ,max1≤j≤d(−xj )} for any
real numbers x1, . . . , xd , we obtain the following result as a direct consequence of
Theorem 2.1.

COROLLARY 2.1. Under the assumptions of Theorem 2.1(b), we have

sup
x∈R

∣∣∣P ( max
1≤j≤d

|Fj | ≤ x
)

− P
(

max
1≤j≤d

|Zj | ≤ x
)∣∣∣≤ C′1/3(logd)2/3,

where C′ > 0 depends only on b.
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In order to make Theorem 2.1 and Corollary 2.1 useful, we need a reasonable
bound for the quantity . When the random vector F consists of multiple Wiener–
Itô integrals with common order, we have the following useful bound for .

LEMMA 2.2. Let q ≥ 2 be an integer and suppose that Fj = Iq(fj ) for some
fj ∈ H�q for j = 1, . . . , d . Then we have

 ≤ max
1≤i,j≤d

∣∣C(i, j) − E[FiFj ]
∣∣

+ Cq logq−1(2d2 − 1 + eq−2) max
1≤k≤d

√
E
[
F 4

k

]− 3E
[
F 2

k

]2
,

where Cq > 0 depends only on q .

REMARK 2.3. Lemma 2.2 implies that, in order to bound the Kolmogorov
distance between F∨ and Z∨, we only need to control the convergence rate of the
covariance matrix of F to that of Z and the fourth cumulants of the components of
F , as long as F consists of multiple Wiener–Itô integrals with common order. This
can be considered as a type of fourth moment phenomenon, which was first discov-
ered by [45] while they derived central limit theorems for sequences of multiple
Wiener–Itô integrals. For more information about the fourth moment phenomenon,
we refer to [40] and references therein.

It is often involved to compute the variables L−1Fj in the case that Fj ’s are
general Wiener functionals. It would be worth mentioning that we can avoid this
issue if the variables Fj are twice differentiable in the Malliavin sense and satisfy a
suitable moment condition. To state such a result precisely, we make some defini-
tions: For an H ⊗ H -valued random variable G, we denote by ‖G‖op the operator
norm of the (random) operator H � h �→ 〈h,G〉H ∈ H . Also, we say that a random
variable Y is sub-Gaussian relative to the scale a > 0 if E[eλY ] ≤ exp(λ2a2/2) for
all λ ∈ R.

LEMMA 2.3. If F1, . . . ,Fd ∈D2,4p for a positive integer p, we have

 ≤ max
1≤i,j≤d

∣∣C(i, j) − E[FiFj ]
∣∣

+ d1/p
√

2p − 1 · 3

2

(
max

1≤i≤d

∥∥∥∥D2Fi

∥∥
op

∥∥
4p

)(
max

1≤j≤d

∥∥‖DFj‖H

∥∥
4p

)
.

Moreover, if there is a constant a > 0 such that both the variables ‖D2Fi‖op and
‖DFi‖H are sub-Gaussian relative to the scale a for all i = 1, . . . , d , we have

 ≤ max
1≤i,j≤d

∣∣C(i, j) − E[FiFj ]
∣∣+ Ca2 log3/2(2d2 − 1 + √

e
)
,

where C > 0 is a universal constant.



1670 Y. KOIKE

REMARK 2.4. The above result (combined with Theorem 2.1) can be viewed
as an analogy of the so-called second-order Poincaré inequalities proved in Nour-
din, Peccati and Reinert [41]. Indeed, its proof is based on the lemmas proved
there.

3. Gaussian approximation of maxima of random symmetric quadratic
forms. In this section, we focus on the problem of approximating the distribu-
tion of maxima of symmetric quadratic forms. The next result can be easily derived
from the results in the previous section.

THEOREM 3.1. For each n ∈ N, let ξn be an Nn-dimensional centered Gaus-
sian vector with covariance matrix �n = (�n(k, l))1≤k,l≤Nn and dn ≥ 2 be an
integer. Also, for each k = 1, . . . , dn, let An,k be an Nn × Nn symmetric matrix
and Zn = (Zn,1, . . . ,Zn,dn)

� be a dn-dimensional centered Gaussian vector with
covariance matrix Cn = (Cn(k, l))1≤k,l≤dn . Set Fn,k := ξ�

n An,kξn − E[ξ�
n An,kξn]

and suppose that the following conditions are satisfied:

(i) There is a constant b > 0 such that Cn(k, k) ≥ b for every n and every
k = 1, . . . , dn.

(ii) max1≤k≤dn(E[F 4
n,k] − 3E[F 2

n,k]2) log6 dn → 0 as n → ∞.

(iii) max1≤k,l≤dn |Cn(k, l) − E[Fn,kFn,l]| log2 dn → 0 as n → ∞.

Then we have

(3.1) sup
x∈R

∣∣∣P ( max
1≤k≤dn

Fn,k ≤ x
)

− P
(

max
1≤k≤dn

Zn,k ≤ x
)∣∣∣→ 0

and

sup
x∈R

∣∣∣P ( max
1≤k≤dn

|Fn,k| ≤ x
)

− P
(

max
1≤k≤dn

|Zn,k| ≤ x
)∣∣∣→ 0

as n → ∞.

REMARK 3.1. Since any symmetric Gaussian quadratic form can be written
as a linear combination of independent χ2 random variables via eigenvalue de-
composition (see, e.g., Section 3.2.1 of [17]), the readers may be wondering about
whether it is possible to apply the original CCK theory to derive a similar re-
sult to Theorem 3.1 using eigenvalue decomposition. This is however impossible
in general because the matrices �

1/2
n An,1�

1/2
n , . . . ,�

1/2
n An,dn�

1/2
n are not neces-

sarily simultaneously diagonalizable by an orthogonal matrix, which may induce
an additional cross-sectional dependence after orthogonal transformation. To see
this, suppose that �n is identity for simplicity. Then the aforementioned eigen-
value decomposition argument reads as follows: For each k = 1, . . . , dn, we take
an Nn ×Nn real orthogonal matrix Un,k such that Un,kAn,kU

�
n,k is diagonal, and set

εn,k = Un,kξn. Then the components of εn,k are independent and Fn,k can be writ-
ten as a linear combination of the squared components of εn,k . However, for k �= l,
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the covariance matrix of εn,k and εn,l is given by Un,kU
�
n,l , which is generally not

diagonal; for example, we have

1√
2

(
1 1
1 −1

)(
1√
5

(
2 1
1 −2

))�
= 1√

10

(
3 −1
1 3

)
.

REMARK 3.2. Even if the matrices �
1/2
n An,1�

1/2
n , . . . ,�

1/2
n An,dn�

1/2
n are si-

multaneously diagonalizable, there is gain to use Theorem 3.1 instead of the orig-
inal CCK theory. To see this, suppose that each Fn,k can be written as

Fn,k =
Nn∑
i=1

λn,k(i)
(
η2

i − 1
)
,

where λn,k(1), . . . , λn,k(Nn) ∈ R and (ηi)
∞
i=1 is a sequence of i.i.d. standard nor-

mal variables. In this case, if we assume that there are constants b, b > 0 such
that

b ≤
Nn∑
i=1

λn,k(i)
2 ≤ b

for all n ∈ N and k = 1, . . . , dn and that the matrix Cn is equal to the covariance
matrix of the variables Fn,1, . . . ,Fn,dn , Proposition 2.1 of [15] yields the conver-
gence (3.1), provided that B2

n log7(dnNn) = o(Nn) as n → ∞, where

Bn =√
Nn max

1≤k≤dn

max
1≤i≤Nn

∣∣λn,k(i)
∣∣.

Since we have

(3.2) max
1≤k≤dn

(
E
[
F 4

n,k

]− 3E
[
F 2

n,k

]2)≤ B2
n

Nn

b,

the convergence (3.1) is indeed implied by B2
n log6 dn = o(Nn) according to The-

orem 3.1. In addition, the inequality (3.2) can be not tight. A cheap example is the
case that

λn,k(i) =
{

1/N1/4
n if i = k,

1/
√

Nn otherwise.

In this case, we have B2
n/Nn = 1/

√
Nn, while it holds that

max
1≤k≤dn

(
E
[
F 4

n,k

]− 3E
[
F 2

n,k

]2)= O
(
N−1

n

)
.

See also Remark 4.8 for another advantage of using our results instead of the
original CCK theory.

REMARK 3.3 (Discussion on the fourth moment condition (ii)).
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(i) In Theorem 3.1, the number Nn does not necessarily diverge to get the
convergence E[F 4

n,k] − 3E[F 2
n,k]2 → 0. This is because the variance of ξn is al-

lowed to diverge in the setting of the theorem. To see this, suppose that Nn = 1, ξn

is a centered Gaussian variable with variance n, and An,k = 1/
√

2n. In this case,
we have Fn,k = (ξ2

n − n)/
√

2n and thus E[F 2
n,k] = 1 and E[F 4

n,k] − 3E[F 2
n,k]2 =

12/n → 0.
(ii) If supn∈N max1≤k≤dn E[F 2

n,k] < ∞, a sufficient condition to prove the con-

dition (ii) of Theorem 3.1 is max1≤k≤dn ‖�1/2
n An,k�

1/2
n ‖sp log3 dn → 0 as n → ∞.

This follows from the following inequality (see equation (11) of [17]):

E
[
F 4

n,k

]− 3E
[
F 2

n,k

]2 = 48 tr
[(

�1/2
n An,k�

1/2
n

)4]≤ 24
∥∥�1/2

n An,k�
1/2
n

∥∥2
spE

[
F 2

n,k

]
(note that we always have E[F 4

n,k] − 3E[F 2
n,k]2 ≥ 0; see Remark 5.2.5 of [40]).

In practice, it is often easier to check the condition on ‖�1/2
n An,k�

1/2
n ‖sp than to

directly check the condition on E[F 4
n,k] − 3E[F 2

n,k]2.
(iii) The condition E[F 4

n,k] − 3E[F 2
n,k]2 → 0 is necessary to approximate

the distribution of the random variable Fn,k by a Gaussian distribution if
supn∈N E[F 2

n,k] < ∞ because there is a universal constant c > 0 such that

sup
n∈N

E
[
F 8

n,k

]≤ c sup
n∈N

E
[
F 2

n,k

]4
< ∞

(see, e.g., Theorem 5.10 of [25]), which implies the uniform integrability of the
variables F 2

n,k and F 4
n,k , n = 1,2, . . . . Actually, adopting an analogous discussion

to the one from Chernozhukov, Chetverikov and Kato [15], we can easily general-
ize the conclusion of Theorem 3.1 to the convergence of the Kolmogorov distance
between Fn and Zn as follows:

sup
x1,...,xdn∈R

∣∣∣∣∣P
(

dn⋂
k=1

{Fn,k ≤ xk}
)

− P

(
dn⋂

k=1

{Zn,k ≤ xk}
)∣∣∣∣∣→ 0.

Therefore, if supn∈N max1≤k≤dn E[F 2
n,k] < ∞, the condition max1≤k≤dn(E[F 4

n,k]−
3E[F 2

n,k]2) log6 dn → 0 as n → ∞ is indeed a necessary condition when dn is
fixed (it is still unclear that this condition is necessary when dn → ∞ as n → ∞,
though).

In the next section, we will apply Theorem 3.1 to derive a Gaussian approxima-
tion of the null distribution of the test statistic for the absence of lead-lag effects.
In order to implement the test in practice, we need to compute quantiles of the
null distribution, but it is not easy to directly compute those of the derived Gaus-
sian analog of the test statistic because its covariance structure contains unknown
quantities for statisticians. For this reason, we will apply a wild bootstrap proce-
dure to approximately compute quantiles of the null distribution. Theorem 3.1 is
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still applicable for ensuring the validity of such a procedure as long as Gaussian
wild bootstrapping is considered, but it turns out that a wild bootstrap procedure
based on another distribution performs much better in finite samples. For this rea-
son, we partially generalize Theorem 3.1 to a non-Gaussian case.

For every n ∈ N, let Nn ≥ 1 and dn ≥ 2 be integers and let �n,k = (γn,k(i,

j))1≤i,j≤Nn be an Nn × Nn symmetric matrix for each k = 1, . . . , dn. We assume
that γn,k(i, i) = 0 for all i = 1, . . . ,Nn, k = 1, . . . , dn and n ∈ N. Given a sequence
ξ = (ξi)

∞
i=1 of random variables, we set

Qn,k(ξ) :=
Nn∑

i,j=1

γn,k(i, j)ξiξj , k = 1, . . . , dn

for every n ∈ N.
Let Y = (Yi)

∞
i=1 be a sequence of independent variables such that E[Yi] = 0

and E[Y 2
i ] = 1 for every i. Also, let G = (Gi)

∞
i=1 be a sequence of indepen-

dent standard Gaussian variables. For every i ∈ N, we define the random variables
(W

(i)
j )∞j=1 by

W
(i)
j =

{
Yj if j ≤ i,

Gj if j > i.

THEOREM 3.2. For each n ∈ N, let Zn = (Zn,1, . . . ,Zn,dn)
� be a dn-

dimensional centered Gaussian vector with covariance matrix Cn = (Cn(k,

l))1≤k,l≤dn , and set

Rn,1 =
Nn∑
i=1

E

[
max

1≤k≤dn

∣∣∣∣∣
Nn∑
j=1

γn,k(i, j)W
(i)
j

∣∣∣∣∣
3](

E
[|Yi |3]+ E

[|Gi |3]),
Rn,2 = max

1≤k,l≤dn

∣∣Cn(k, l) − E
[
Qn,k(G)Qn,l(G)

]∣∣,
Rn,3 = max

1≤k≤dn

√
E
[
Qn,k(G)4

]− 3E
[
Qn,k(G)2

]2
.

Suppose that there is a constant b > 0 such that Cn(k, k) ≥ b for every n and every
k = 1, . . . , dn. Then we have

sup
x∈R

∣∣∣P ( max
1≤k≤dn

∣∣Qn,k(Y )
∣∣≤ x

)
− P

(
max

1≤k≤dn

|Zn,k| ≤ x
)∣∣∣→ 0

as n → ∞, provided that Rn,1 log
7
2 dn ∨ Rn,2 log2 dn ∨ Rn,3 log3 dn → 0.

REMARK 3.4. The variables W
(i)
j are related to the so-called Lindeberg

method. In fact, our proof of Theorem 3.2 is based on the generalized Lindeberg
method developed in [35, 42] (see also Chapter 11 of [40]).
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REMARK 3.5. There is probably room for improvement in Theorem 3.2. In
particular, the truncation arguments used in the CCK theory (based on Lemma A.6
of [9]) are apparently applicable to our case, which would significantly weaken the
assumptions of Theorem 3.2. On the other hand, it is less obvious whether the other
techniques used in the CCK theory (especially in Chernozhukov, Chetverikov and
Kato [15]) are applicable to our case or not. Their excellent argument leads a very
sharp bound, but it seems crucial in their argument that the statistics considered
there is a linear function of independent random variables. More precisely, to apply
their argument to our case, the independence between the variables Ui and Vi

appearing in the proof of Theorem 3.2 seems necessary, but this is not the case
(such a structure is necessary to get an analogous estimate to equation (30) of [15],
e.g.). This issue is left to future research.

REMARK 3.6. Analogous quantities to Rn,2 and Rn,3 from Theorem 3.2 have
already appeared in Theorem 3.1 and it is usually not difficult to bound them. On
the other hand, as long as the third moments of Yi ’s are uniformly bounded, the
quantity Rn,1 is bounded by the third moment of the maximum of a sum of (high-
dimensional) independent random vectors, so we have many inequalities which
can be used to bound it (see, e.g., Chapter 14 of [6]). Here, we give two examples
of such inequalities. The first one only requires the uniform boundedness of the
pth moments of Yi’s for some p ≥ 3, while the latter one is applicable when the
variables Yi are sub-Gaussian.

LEMMA 3.1. (a) Suppose that supi∈N ‖Yi‖p < ∞ for some p ≥ 3. Then

Nn∑
i=1

E

[
max

1≤k≤dn

∣∣∣∣∣
Nn∑
j=1

γn,k(i, j)W
(i)
j

∣∣∣∣∣
3]

≤ 2d3/p
n (p − 1)3/2 sup

i∈N
‖Yi‖3

p

Nn∑
i=1

max
1≤k≤dn

(
Nn∑
j=1

γn,k(i, j)2

)3/2

for every n.
(b) Suppose that there is a constant a > 0 such that Yi is sub-Gaussian relative

to the scale a for all i = 1,2, . . . . Then

Nn∑
i=1

E

[
max

1≤k≤dn

∣∣∣∣∣
Nn∑
j=1

γn,k(i, j)W
(i)
j

∣∣∣∣∣
3]

≤ 53/2a3 log3/2(2dn − 1 + √
e)

Nn∑
i=1

max
1≤k≤dn

(
Nn∑
j=1

γn,k(i, j)2

)3/2

for every n.
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Using the above lemma, we obtain a useful criterion to check the conditions
appearing in Theorem 3.2 in terms of the so-called influence indices: Given a sym-
metric matrix � = (γ (i, j))1≤i,j≤N , the influence of the variable i of � is defined
by

Infi (�) =
N∑

j=1

γ (i, j)2

for i = 1, . . . ,N . The influence indices play an important role in studies of the
central limit theorem for random quadratic forms (and homogeneous sums more
generally); see [21, 35, 42], for example.

COROLLARY 3.1. Suppose that there is a constant a > 0 such that Yi is
sub-Gaussian relative to the scale a for all i = 1,2, . . . . Then the convergences

Rn,1 log
7
2 dn → 0 and Rn,3 log3 dn → 0 are implied by the following condition:

(logdn)
6 max

1≤k≤dn

tr
(
�4

n,k

)
+ (logdn)

5
(

max
1≤i≤Nn

√
�n,i

) Nn∑
i=1

�n,i → 0 as n → ∞,

(3.3)

where

�n,i = max
1≤k≤dn

Infi (�n,k), i = 1, . . . ,Nn.

REMARK 3.7 (Implication of condition (3.3)). Let us consider the case that
there is a symmetric matrix �̄n = (γ̄n(i, j))1≤i,j≤Nn such that Infi (�̄n) = �n,i for
all i = 1, . . . ,Nn. Namely, the influence indices of the matrices �n,1, . . . ,�n,dn are
dominated by that of the matrix �̄n. In this case, condition (3.3) reads as

(logdn)
6 max

1≤k≤dn

tr
(
�4

n,k

)+ (logdn)
10‖�̄n‖4

F max
1≤i≤Nn

Infi (�̄n) → 0 as n → ∞.

The quantity ‖�̄n‖2
F is the variance of the quadratic form

Q̄n(Y ) =
Nn∑

i,j=1

γ̄n(i, j)YiYj .

Therefore, it would be natural to assume supn∈N ‖�̄n‖2
F < ∞. Moreover, in many

cases it is reasonable to expect max1≤i≤dn Infi (�̄n) = O(N−1
n ) because we have

by definition

max
1≤i≤dn

Infi (�̄n) ≤ ‖�̄n‖2
sp.
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According to [21], ‖�̄n‖sp gives an optimal convergence rate for the Kolmogorov
distance between

Q̄n(Y )/

√
Var
[
Q̄n(Y )

]
and a standard Gaussian variable, hence it seems reasonable to expect ‖�̄n‖sp =
O(N

−1/2
n ) in view of the standard Berry–Esseen inequality. Moreover, since

tr(�4
n,k) ≤ ‖�n,k‖2

sp‖�n,k‖2
F , we might expect max1≤k≤dn tr(�4

n,k) = O(N−1
n ) due

to a similar reason. Consequently, the condition (3.3) is typically satisfied when
log10 dn = o(Nn) as n → ∞.

A typical example satisfying the above condition is the situations where �n,k’s
correspond to sample auto-covariances:

γn,k(i, j) =
{

1/
√

Nn if |j − i| = k,

0 otherwise.

In this case, the quantities
∑Nn

j=1 γn,k(i, j)2 does not depend on k, so we can take

�̄n = �n,1 for example.

4. Application to high-frequency data.

4.1. Testing the absence of lead-lag effects. We turn to the problem of testing
the absence of lead-lag effects which is mentioned at the beginning of the Intro-
duction. Here, we consider a more general setting than the one described in the
Introduction by allowing (deterministic) time-varying volatilities as well as the
presence of multiple lead-lag times under the alternative.

Let ρ1, . . . , ρM be real numbers satisfying the condition
∑M

m=1 |ρm| < 1. Also,
let θ1, . . . , θM be mutually different numbers. Then, by Proposition 2 from [22]
there is a bivariate Gaussian process Bt = (B1

t ,B2
t ) (t ∈ R) with stationary incre-

ments such that both B1 and B2 are standard Brownian motions as well as B1 and
B2 have the cross spectral density given by

s(λ) =
M∑

m=1

ρme−√−1θmλ, λ ∈ R.

This means that we have

E

[(∫ ∞
−∞

f (t) dB1
t

)(∫ ∞
−∞

g(t) dB2
t

)]
=

M∑
m=1

ρm

∫ ∞
−∞

f (t)g(t + θm)dt

for any f,g ∈ L2(R).
For each ν = 1,2, we consider the process Xν = (Xν

t )t≥0 given by

(4.1) Xν
t = Xν

0 +
∫ t

0
σν(s) dBν

s , t ≥ 0,
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where σν ∈ L2(0,∞) is nonnegative-valued and deterministic. We observe the
process Xν on the interval [0, T ] at the deterministic sampling times 0 ≤ tν0 <

tν1 < · · · < tνnν
≤ T , which implicitly depend on the parameter n ∈ N such that

rn := max
ν=1,2

max
i=0,1,...,nν+1

(
tνi − tνi−1

)→ 0

as n → ∞, where we set tν−1 := 0 and tνnν+1 := T for each ν = 1,2.

REMARK 4.1. It is not difficult to extend the following discussion to the case
that the volatilities σ1, σ2 and the sampling times (t1

i )
n1
i=0, (t

2
j )

n2
j=0 are random but

independent of the process B , but we focus on the deterministic case for the sim-
plicity of notation. Extension to a situation where the volatilities depend on B is
nontrivial because of the nonergodic nature of the problem (i.e., the asymptotic
covariance matrix of the statistics (Un(θ))θ∈Gn defined below generally depends
on B) and we leave it to future research.

Our aim is to construct a testing procedure for the following statistical hypoth-
esis testing problem based on discrete observation data (X1

t1
i

)
n1
i=0 and (X2

t2
i

)
n2
i=0:

H0 : ρm = 0 for all m = 1, . . . ,M vs
(4.2)

H1 : ρm �= 0 for some m = 1, . . . ,M.

We introduce some notation. For each ν = 1,2, we associate the observation
times (tνi )

nν

i=0 with the collection of intervals �ν
n = {(tνi−1, t

ν
i ] : i = 1, . . . , nν}.

We will systematically employ the notation I (resp., J ) for an element of �1
n

(resp., �2
n). For an interval S ⊂ [0,∞), we set S = supS, S = infS and |S| =

S − S. In addition, we set V (S) = VS − VS for a a stochastic process (Vt )t≥0, and
Sθ = S + θ for a real number θ . We define the Hoffmann–Rosenbaum–Yoshida
cross-covariance estimator by

Un(θ) = ∑
I∈�1

n,J∈�2
n

X1(I )X2(J )K(I, J−θ ),

where we set K(I, J ) = 1{I∩J �=∅} for two intervals I and J . Now our test statistic
is given by

Tn = √
nmax

θ∈Gn

∣∣Un(θ)
∣∣,

where Gn is a finite subset of R.
To establish the asymptotic property of our test statistic Tn, we first investigate

the asymptotic property of the following quantity:

Fn(θ) = √
n
(
Un(θ) − E

[
Un(θ)

])
.

We impose the following conditions:
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[A1] supt∈[0,T ](σ1(t) + σ2(t)) < ∞.
[A2] There are positive constants v, v such that v ≤ Vn(θ) ≤ v for all n ∈ N and

θ ∈ Gn, where

Vn(θ) = n
∑

I∈�1
n,J∈�2

n

(∫
I
σ1(t)

2 dt

)(∫
J

σ2(t)
2 dt

)
K(I, J−θ ).

[A3] �(θm) > 0 for all m = 1, . . . ,M , where

�(θ) =

⎧⎪⎪⎨⎪⎪⎩
∫ T −θ

0
σ1(t)σ2(t + θ) dt if θ ≥ 0,∫ T +θ

0
σ1(t − θ)σ2(t) dt if θ < 0.

[A4] The grid Gn satisfies the following conditions:
(i) There is a constant γ > 0 such that #Gn = O(nγ ) as n → ∞.

(ii) There is a sequence (υn)n∈N of positive numbers such that

{θ1, . . . , θM} ⊂ ⋃
θ∈Gn

[θ − υn, θ + υn]

and limn→∞ υn min{n1, n2} = 0.

REMARK 4.2. Assumption [A1] is standard in the literature and satisfied
when σ1 and σ2 are càdlàg, for example. [A2] roughly says that the scaling fac-
tor

√
n is appropriate [the quantity Vn(θ) is related to the variance of Un(θ)]. [A2]

holds true, for example, when 0 < inft∈[0,T ] σν(t) ≤ supt∈[0,T ] σν(t) < ∞ for every
ν = 1,2, n

∑
I∈�1

n
|I |2 + n

∑
J∈�2

n
|J |2 = O(1) as n → ∞ and there is a constant

c > 0 such that n(|I | ∧ |J |) ≥ c for every n and all I ∈ �1
n, J ∈ �2

n. [A3] ensures
that max1≤m≤M |E[Un(θm)]| does not vanish under H1. [A4] ensures that Gn is
sufficiently fine to capture the cross-covariance at the lag θm for every m. Note
that [A4] is also assumed in [24] (see Assumption B3 of [24]).

PROPOSITION 4.1. For each n ∈ N, let (Zn(θ))θ∈Gn be a family of centered
Gaussian variables such that E[Zn(θ)Zn(θ

′)] = E[Fn(θ)Fn(θ
′)] for all θ, θ ′ ∈

Gn. Under assumptions [A1]–[A2], we have

sup
x∈R

∣∣∣P (max
θ∈Gn

∣∣Fn(θ)
∣∣≤ x

)
− P

(
max
θ∈Gn

∣∣Zn(θ)
∣∣≤ x

)∣∣∣→ 0

as n → ∞, provided that nr2
n log6(#Gn) → 0.

REMARK 4.3. It is impossible to apply the original CCK theory (at least
naively) to prove Proposition 4.1 because we need to apply Theorem 3.1 to a situa-
tion where the matrices �

1/2
n An,1�

1/2
n , . . . ,�

1/2
n An,dn�

1/2
n are not simultaneously
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diagonalizable. In fact, if we consider the synchronous and equidistant sampling
with the step size 1/n, the matrices corresponding to Un(±1/n) are of the form(

O A

A� O

)
,

where we take the matrix A = (aij ) as

aij =
{

1 if j − i = ±1,

0 otherwise.

We can easily check that those matrices are not commutative unless the size of A

is less than or equal to 2.

The above proposition suggests that the null distribution of our test statistic Tn

could be approximated by that of maxθ∈Gn |Zn(θ)| for sufficiently large n. How-
ever, it is not easy to evaluate the distribution of maxθ∈Gn |Zn(θ)| directly, so we
rely on a (wild) bootstrap procedure to construct critical regions for our test. The
above Gaussian approximation result plays a role in validating the bootstrap pro-
cedure.

Let (w1
I )I∈�1

n
and (w2

J )J∈�2
n

be mutually independent sequence of i.i.d. random

variables which are independent of the processes X1 and X2. Then we set

U∗
n (θ) = ∑

I∈�1
n,J∈�2

n

(
w1

IX
1(I )

)(
w2

J X2(J )
)
K(I, J−θ ).

Given a significance level α, we denote by q∗
n(1 − α) the 100(1 − α)% quantile of

the bootstrapped test statistic T ∗
n = √

nmaxθ∈Gn |U∗
n (θ)|, conditionally on X1 and

X2:

q∗
n(1 − α) = inf

{
z ∈ R : P (T ∗

n ≤ z|FX)≥ 1 − α
}
,

where FX is the σ -field generated by the processes X1 and X2.

REMARK 4.4. We generate the bootstrap observations under the null hypoth-
esis H0. This is a typical approach in the bootstrap test literature (see, e.g., [4]).
Moreover, as discussed in Section 4 of [19] as well as Section 2 of [18], this ap-
proach often serves as refining the performance of the test.

PROPOSITION 4.2. Suppose that [A1]–[A4] are satisfied. Suppose also that
E[w1

I ] = E[w2
J ] = 0, E[(w1

I )
2] = E[(w2

J )2] = 1 for all I, J and there is a con-
stant a > 0 such that both w1

I and w2
J are sub-Gaussian relative to the scale a for

all I, J . Suppose further that rn = O(n−3/4−η) as n → ∞ for some η > 0. Then
the following statements hold true for all α ∈ (0,1):

(a) Under H0, we have P(Tn ≥ q∗
n(1 − α)) → α as n → ∞.
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(b) Under H1, we have P(Tn ≥ q∗
n(1 − α)) → 1 as n → ∞.

By Proposition 4.2, given a significance level α ∈ (0,1), we obtain a consis-
tent and asymptotically level α test for (4.2) by rejecting the null hypothesis if
Tn ≥ q∗

n(1 − α). Of course, in the practical implementation we replace q∗
n(1 − α)

by a simulated one. For example, given observation data, we generate i.i.d. copies
T ∗

n (1), . . . , T ∗
n (R) of T ∗

n (conditionally on the observation data) with some suffi-
ciently large integer R. Then we replace the function P(T ∗

n ≤ z|FX) of z by its
empirical counterpart 1

R

∑R
r=1 1{T ∗

n (r)≤z} and compute q∗
n(1−α) accordingly. Note

that this is equivalent to computing the bootstrap p-value p̂∗ = 1
R

∑R
r=1 1{T ∗

n (r)>Tn}
and rejecting the null hypothesis if p̂∗ ≤ α.

REMARK 4.5. The proposed test is evidently invariant under multiplying a
constant. In particular, the factor

√
n can be dropped when we implement the test

in practice.

REMARK 4.6 (Choice of the multiplier variables). Choice of the distribution
of the multiplier variables (w1

I )I∈�1
n

and (w2
J )J∈�2

n
are important for the finite

sample property of the test. In our situation, it turns out that choosing Rademacher
variables induces a quite good finite sample performance of our testing procedure.
Namely, the proposed test performs very well in finite samples when the distribu-
tions of w1

I and w2
J are chosen according to

P
(
w1

I = 1
)= P

(
w1

I = −1
)= P

(
w2

J = 1
)= P

(
w2

J = −1
)= 1

2
.

This is presumably because the above choice makes the unconditional distribution
of the bootstrapped test statistics of T ∗

n coincide with the distribution of Tn. This
can be shown in the same way as in the proof of Theorem 1 from [18]. For this
reason, we recommend that we should use Rademacher variables as the multiplier
variables for the above testing procedure (and we do so in the simulation study of
Section 5).

4.2. Uniform confidence bands for spot volatility. To illustrate another poten-
tial application of our main results, we present an application of our result to con-
structing uniform confidence bands for spot volatility. This section is only for an
illustration purpose, so we do neither pursue the generality of the theory nor dis-
cuss practical problems on implementation such as the choice of a bandwidth and
a kernel function. We refer to Section 6 of [31] for a discussion on the latter issue.

Let us consider the stochastic process X = (Xt)t∈[0,T ] which is defined on a
stochastic basis (
,F, (Ft )t∈[0,T ],P ) and of the form

Xt = X0 +
∫ t

0
σ(s) dBs, t ∈ [0, T ],
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where B = (Bt )t∈[0,T ] is a standard (Ft )-Brownian motion and σ = (σ (t))t∈[0,T ]
is a continuous (Ft )-adapted process. The aim of this section is to construct uni-
form confidence bands for the spot volatility σ 2 based on the high-frequency ob-
servation data {Xti }ni=0, where ti = T i/n, i = 0,1, . . . , n.

Specifically, we consider the following kernel-type estimator for σ 2 (cf. [20,
31]):

σ̂ 2
n (t) :=

n∑
i=1

Kh(ti−1 − t)(Xti − Xti−1)
2, t ∈ [0, T ],

where h := hn > 0 is a bandwidth parameter, Kh(x) = K(x/h)/h for x ∈ R and
K : R→R is a kernel function. We derive a Gaussian approximation result for the
supremum of the Studentization of σ̂ 2

n (t). Let us set

sn(t) =
√√√√ 2

n2

n∑
i=1

Kh(ti−1 − t)2

for t ∈ [0, T ]. In view of Theorem 3 from [31], σ 2(t)sn(t) can be seen as an ap-
proximation of the asymptotic standard error of σ̂ 2

n (t). We define the Gaussian
analog of the Studentization of σ̂ 2

n (t) as follows. For each n ∈ N, let (zn
i )

n
i=1 be a

sequence of i.i.d. centered Gaussian variables with variance 2/n2, and we set

Zn(t) = 1

sn(t)

n∑
i=1

Kh(ti−1 − t)zn
i , t ∈ [0, T ].

We impose the following conditions:

[B1] w(σ ;η) = Op(ηγ ) as η → 0 for some γ ∈ (0,1]. Moreover, σ 2(t) > 0
for all t ∈ [0, T ] almost surely.

[B2] The kernel function K : R → R is Lipschitz continuous and compactly
supported as well as satisfies

∫∞
−∞ K(t) dt = 1.

We also impose the following strengthened version of assumption [B1] when de-
riving the convergence rate of Gaussian approximation:

[SB1] There is a constant � > 0 such that �−1 ≤ |σ(t)| ≤ � and w(σ ;η) ≤
�ηγ for all t ∈ [0, T ] and η ∈ (0,1).

PROPOSITION 4.3. Suppose that [B1]–[B2] are satisfied. Suppose also that
the bandwidth parameter h satisfies nh1+2γ logn → 0 and log6 n/nh → 0 as n →
∞. Let an be a sequence of positive numbers such that an → 0 and an/h → ∞ as
n → ∞. Then we have

(4.3) sup
x∈R

∣∣∣∣P( sup
t∈[an,T −an]

∣∣∣∣ σ̂ 2
n (t) − σ 2(t)

σ 2(t)sn(t)

∣∣∣∣≤ x

)
−P

(
sup

t∈[an,T −an]
∣∣Zn(t)

∣∣≤ x
)∣∣∣∣→ 0
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as n → ∞. Moreover, if we additionally assume [SB1], we have

sup
x∈R

∣∣∣∣P( sup
t∈[an,T −an]

∣∣∣∣ σ̂ 2
n (t) − σ 2(t)

σ 2(t)sn(t)

∣∣∣∣≤ x

)
− P

(
sup

t∈[an,T −an]
|Zn(t)| ≤ x

)∣∣∣∣
(4.4)

= O
(√

nh1+2γ logn
)+ O

(
logn

(nh)
1
6

)
as n → ∞.

REMARK 4.7. We introduce the parameters an in Proposition 4.3 to avoid
boundary effects. See Section 4 of [31] for more details about this topic.

REMARK 4.8. Although we use Lemma 2.1 to prove Proposition 4.3 (see the
proof of Lemma B.17), we can indeed use Theorem 3.1 of [14] instead to derive
a similar result. However, the result requires a (slightly) stronger condition on the
bandwidth h and leads to a worse convergence rate. In fact, an inspection of the
proof of Proposition 2.1 from [15] implies that we need to replace ε−2 by ε−3 in
the inequality (B.9) if we use Theorem 3.1 of [14] instead of Lemma 2.1 to prove
Lemma B.17. Then the optimal choice of ε in the proof of Proposition 4.3 becomes

ε = (nh)− 1
8 log3/8 n, which changes the order of the second term on the right-hand

side of (4.4) to O((nh)− 1
8 log7/8 n). Hence we need the condition log7 n/nh → 0

as n → ∞ to get the convergence (4.3).

In contrast to the previous subsection, the process Zn(t) does not contain any
unknown parameter, so Proposition 4.3 is readily applicable to construction of
uniform confidence bands for σ 2: Given a significance level α ∈ (0,1), let qn(1 −
α) be the 100(1 − α)% quantile of the variable supt∈[an,T −an] |Zn(t)| (which can
be computed, e.g., by simulation). Then[

σ̂ 2
n (t)

1 + sn(t) · qn(1 − α)
,

σ̂ 2
n (t)

1 − sn(t) · qn(1 − α)

]
, t ∈ [an, T − an],

give asymptotically uniformly valid 100(1 − α)% confidence bands for σ 2(t), t ∈
[an, T − an].

REMARK 4.9. The applications considered in this section concerns asymp-
totic settings where the terminal value T of the sampling interval is fixed. Here, we
briefly discuss applicability of our theory to asymptotic settings where the terminal
value T of the sampling interval tends to infinity. In such a setting, a typical prob-
lem which our theory seems to fit would be constructing uniform confidence bands
for the coefficient functions of an ergodic diffusion process. Nonparametric esti-
mation of the coefficient functions of a diffusion process from high-frequency data
is extensively studied in the literature, but most studies focus only on point-wise
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inference (except for Kanaya [26], where uniform convergence rates of kernel-
based estimators have been derived; see also Söhl and Trabs [49] where the au-
thors construct uniform confidence bands for the drift coefficient of a diffusion
process based on low-frequency observation data), so it would be important to
consider this problem. In such a problem, estimators typically have deterministic
asymptotic covariance matrices, hence the issue indicated in Remark 4.1 does not
arise. Unfortunately, however, we encounter another issue that it seems difficult
(at least not straightforward) to get a reasonable estimate for the quantity  in
this problem. This is perhaps because we do not take account of special properties
of the underlying diffusion process (such as the Markov and mixing properties)
when deriving our estimate. Therefore, this issue might be resolved by adopting
the approach from Kusuoka and Yoshida [32] where Malliavin calculus is locally
applied to the underlying process with taking account of the Markov and mixing
properties. However, a rigorous treatment of this idea is rather demanding, so we
leave it to future work.

5. Numerical illustration. In this section, we illustrate the finite sample per-
formance of the testing procedure for the absence of lead-lag effects, which
is proposed in Section 4.1.3 The setting of our numerical experiments is basi-
cally adopted from Section 5 of [24]. Specifically, we simulate model (1.1) with
T = 1, ϑ = 0.1, x1

0 = x2
0 = 0, σ1 = σ2 = 1. We vary the correlation parameter as

ρ ∈ {0,0.25,0.5,0.75} to examine the size and the power of the testing procedure.
We consider both synchronous and nonsynchronous sampling scenarios. For the
synchronous sampling scenario t1

i = t2
i = ihn, i = 0,1, . . . , �T h−1

n �, we examine
three kinds of sampling frequencies: hn ∈ {10−3,3 · 10−3,6 · 10−3}. Also, in these
scenarios we set Gn = {khn : k ∈ Z, |khn| ≤ 0.3} as the search grid. On the other
hand, for the nonsynchronous sampling scenario, we first simulate the processes
on the equidistant times i · 10−3, i = 0,1, . . . ,1000, then we randomly pick 300
sampling times for X1. We do so for X2 independently of the sampling for X1.
In this scenario, we set Gn = {k · 10−3 : k ∈ Z, |k| ≤ 300} as the search grid. For
the testing procedure, we use Rademacher variables as the multiplier variables and
999 bootstrap replications to construct the critical regions. We run 10,000 Monte
Carlo iterations in each experiment.

Table 1 reports the rejection rates of the proposed test in each experiment. For
the case ρ = 0, the numbers should be close to the corresponding significance
levels, and this is true for all the experiments. Turning to the power performance,
we find that in the low correlation case ρ = 0.25 the power of the test is rather
weak except for the most frequent sampling scenario. This is reasonable in view
of the simulation results reported in [24], which indicate that the contrast function
Un(θ) becomes flat in that case. For the moderate and the high correlation cases
ρ = 0.5 and ρ = 0.75, the power of the test is satisfactory.

3The proposed testing procedure is implemented in the R package yuima as the function
llag.test since version 1.7.2.



1684 Y. KOIKE

TABLE 1
Rejection rates of the proposed test

ρ = 0 ρ = 0.25 ρ = 0.50 ρ = 0.75

Synchronous sampling scenario
hn = 10−3

α = 0.01 0.011 1.000 1.000 1.000
α = 0.05 0.050 1.000 1.000 1.000
α = 0.10 0.100 1.000 1.000 1.000

hn = 3 · 10−3

α = 0.01 0.010 0.139 0.977 1.000
α = 0.05 0.051 0.281 0.993 1.000
α = 0.10 0.101 0.382 0.997 1.000

hn = 6 · 10−3

α = 0.01 0.011 0.041 0.634 0.997
α = 0.05 0.050 0.131 0.802 1.000
α = 0.10 0.099 0.214 0.867 1.000

Nonsynchronous sampling scenario
α = 0.01 0.010 0.056 0.753 1.000
α = 0.05 0.051 0.152 0.879 1.000
α = 0.10 0.099 0.235 0.919 1.000

Note. α denotes the significance level.
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SUPPLEMENTARY MATERIAL

Supplement to “Gaussian approximation of maxima of Wiener functionals
and its application to high-frequency data” (DOI: 10.1214/18-AOS1731SUPP;
.pdf). This supplement file contains the technical materials of the paper and con-
sists of two appendices. Appendix A collects the preliminary definitions and results
used in Appendix B, which contains proofs of all the results presented in the main
text of the paper.
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