VOL. 42 · NO. 2 | April 2014
 
VIEW ALL ABSTRACTS +
Frontmatter
Ann. Statist. 42 (2), (April 2014)
No abstract available
Ann. Statist. 42 (2), (April 2014)
No abstract available
Articles
Richard Lockhart, Jonathan Taylor, Ryan J. Tibshirani, Robert Tibshirani
Ann. Statist. 42 (2), 413-468, (April 2014) DOI: 10.1214/13-AOS1175
KEYWORDS: Lasso, least angle regression, $p$-value, significance test, 62J05, 62J07, 62F03
Peter Bühlmann, Lukas Meier, Sara van de Geer
Ann. Statist. 42 (2), 469-477, (April 2014) DOI: 10.1214/13-AOS1175A
KEYWORDS: High-dimensional linear model, Multiple hypotheses testing, Semiparametric efficiency, Sparsity, 62J07, 62J12, 62F25
No abstract available
T. Tony Cai, Ming Yuan
Ann. Statist. 42 (2), 478-482, (April 2014) DOI: 10.1214/13-AOS1175B
No abstract available
Jianqing Fan, Zheng Tracy Ke
Ann. Statist. 42 (2), 483-492, (April 2014) DOI: 10.1214/13-AOS1175C
No abstract available
Jinchi Lv, Zemin Zheng
Ann. Statist. 42 (2), 493-500, (April 2014) DOI: 10.1214/13-AOS1175D
No abstract available
Larry Wasserman
Ann. Statist. 42 (2), 501-508, (April 2014) DOI: 10.1214/13-AOS1175E
No abstract available
A. Buja, L. Brown
Ann. Statist. 42 (2), 509-517, (April 2014) DOI: 10.1214/14-AOS1175F
No abstract available
Richard Lockhart, Jonathan Taylor, Ryan J. Tibshirani, Robert Tibshirani
Ann. Statist. 42 (2), 518-531, (April 2014) DOI: 10.1214/14-AOS1175REJ
No abstract available
Shuheng Zhou
Ann. Statist. 42 (2), 532-562, (April 2014) DOI: 10.1214/13-AOS1187
KEYWORDS: graphical model selection, Covariance estimation, inverse covariance estimation, graphical lasso, matrix variate normal distribution, 62F12, 62F30
Ci-Ren Jiang, Wei Yu, Jane-Ling Wang
Ann. Statist. 42 (2), 563-591, (April 2014) DOI: 10.1214/13-AOS1193
KEYWORDS: Covariance operator, Dimension reduction, Functional data analysis, local polynomial smoothing, regularization, sparse data, 62G05, 62G08, 62G20
Li Wang, Lan Xue, Annie Qu, Hua Liang
Ann. Statist. 42 (2), 592-624, (April 2014) DOI: 10.1214/13-AOS1194
KEYWORDS: Additive model, group selection, Model selection, oracle property, partial linear models, polynomial splines, quadratic inference function, SCAD, selection consistency, 62G08, 62G10, 62G20, 62J02, 62F12
Hanna Jankowski
Ann. Statist. 42 (2), 625-653, (April 2014) DOI: 10.1214/13-AOS1196
KEYWORDS: Grenander estimator, monotone density, misspecification, linear functional, Nonparametric maximum likelihood, 62E20, 62G20, 62G07
Jiangyan Wang, Rong Liu, Fuxia Cheng, Lijian Yang
Ann. Statist. 42 (2), 654-668, (April 2014) DOI: 10.1214/13-AOS1197
KEYWORDS: $\mathrm{AR}(p)$, bandwidth, error, ‎kernel‎, oracle efficiency, residual, 62G15, 62M10
Mahdi Soltanolkotabi, Ehsan Elhamifar, Emmanuel J. Candès
Ann. Statist. 42 (2), 669-699, (April 2014) DOI: 10.1214/13-AOS1199
KEYWORDS: Subspace clustering, spectral clustering, Lasso, Dantzig selector, $\ell_{1}$ minimization, multiple hypothesis testing, true and false discoveries, geometric functional analysis, nonasymptotic random matrix theory, 62-07
Yan Sun, Hongjia Yan, Wenyang Zhang, Zudi Lu
Ann. Statist. 42 (2), 700-727, (April 2014) DOI: 10.1214/13-AOS1201
KEYWORDS: AIC/BIC, local linear modeling, profile likelihood, spatial interaction, 62G08, 62G05, 62G20
M. J. Schervish, Teddy Seidenfeld, J. B. Kadane
Ann. Statist. 42 (2), 728-756, (April 2014) DOI: 10.1214/14-AOS1203
KEYWORDS: proper scoring rule, Coherence, conglomerable probability, dominance, Finitely additive probability, sure-loss, 62A01, 62C05
Alexandre Belloni, Victor Chernozhukov, Lie Wang
Ann. Statist. 42 (2), 757-788, (April 2014) DOI: 10.1214/14-AOS1204
KEYWORDS: Pivotal, square-root Lasso, Model selection, non-Gaussian heteroscedastic, generic semiparametric problem, nonlinear instrumental variable, $Z$-estimation problem, $\sqrt{n}$-consistency and asymptotic normality after model selection, 62G05, 62G08, 62G35
Naveen Naidu Narisetty, Xuming He
Ann. Statist. 42 (2), 789-817, (April 2014) DOI: 10.1214/14-AOS1207
KEYWORDS: Bayes factor, hierarchical model, high dimensional data, shrinkage, Variable selection, 62J05, 62F12, 62F15
Back to Top