Open Access
April 2013 Minimax adaptive tests for the functional linear model
Nadine Hilgert, André Mas, Nicolas Verzelen
Ann. Statist. 41(2): 838-869 (April 2013). DOI: 10.1214/13-AOS1093
Abstract

We introduce two novel procedures to test the nullity of the slope function in the functional linear model with real output. The test statistics combine multiple testing ideas and random projections of the input data through functional principal component analysis. Interestingly, the procedures are completely data-driven and do not require any prior knowledge on the smoothness of the slope nor on the smoothness of the covariate functions. The levels and powers against local alternatives are assessed in a nonasymptotic setting. This allows us to prove that these procedures are minimax adaptive (up to an unavoidable $\log\log n$ multiplicative term) to the unknown regularity of the slope. As a side result, the minimax separation distances of the slope are derived for a large range of regularity classes. A numerical study illustrates these theoretical results.

References

1.

[1] Ash, R. B. and Gardner, M. F. (1975). Topics in Stochastic Processes. Probability and Mathematical Statistics 27. Academic Press, New York. MR448463 0317.60014[1] Ash, R. B. and Gardner, M. F. (1975). Topics in Stochastic Processes. Probability and Mathematical Statistics 27. Academic Press, New York. MR448463 0317.60014

2.

[2] Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8 577–606. MR1935648 euclid.bj/1078435219 [2] Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8 577–606. MR1935648 euclid.bj/1078435219

3.

[3] Baraud, Y., Huet, S. and Laurent, B. (2003). Adaptive tests of linear hypotheses by model selection. Ann. Statist. 31 225–251. MR1962505 1018.62037 10.1214/aos/1046294463 euclid.aos/1046294463 [3] Baraud, Y., Huet, S. and Laurent, B. (2003). Adaptive tests of linear hypotheses by model selection. Ann. Statist. 31 225–251. MR1962505 1018.62037 10.1214/aos/1046294463 euclid.aos/1046294463

4.

[4] Cai, T. T. and Hall, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159–2179. MR2291496 1106.62036 10.1214/009053606000000830 euclid.aos/1169571793 [4] Cai, T. T. and Hall, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159–2179. MR2291496 1106.62036 10.1214/009053606000000830 euclid.aos/1169571793

5.

[5] Cardot, H., Ferraty, F., Mas, A. and Sarda, P. (2003). Testing hypotheses in the functional linear model. Scand. J. Stat. 30 241–255. MR1965105 10.1111/1467-9469.00329[5] Cardot, H., Ferraty, F., Mas, A. and Sarda, P. (2003). Testing hypotheses in the functional linear model. Scand. J. Stat. 30 241–255. MR1965105 10.1111/1467-9469.00329

6.

[6] Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13 571–591. MR1997162 1050.62041[6] Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13 571–591. MR1997162 1050.62041

7.

[7] Cardot, H., Goia, A. and Sarda, P. (2004). Testing for no effect in functional linear regression models, some computational approaches. Comm. Statist. Simulation Comput. 33 179–199. MR2044864 1058.62037 10.1081/SAC-120028440[7] Cardot, H., Goia, A. and Sarda, P. (2004). Testing for no effect in functional linear regression models, some computational approaches. Comm. Statist. Simulation Comput. 33 179–199. MR2044864 1058.62037 10.1081/SAC-120028440

8.

[8] Cardot, H. and Johannes, J. (2010). Thresholding projection estimators in functional linear models. J. Multivariate Anal. 101 395–408. MR2564349 1178.62032 10.1016/j.jmva.2009.03.001[8] Cardot, H. and Johannes, J. (2010). Thresholding projection estimators in functional linear models. J. Multivariate Anal. 101 395–408. MR2564349 1178.62032 10.1016/j.jmva.2009.03.001

9.

[9] Cardot, H., Mas, A. and Sarda, P. (2007). CLT in functional linear regression models. Probab. Theory Related Fields 138 325–361. MR2299711 1113.60025 10.1007/s00440-006-0025-2[9] Cardot, H., Mas, A. and Sarda, P. (2007). CLT in functional linear regression models. Probab. Theory Related Fields 138 325–361. MR2299711 1113.60025 10.1007/s00440-006-0025-2

10.

[10] Cardot, H. and Sarda, P. (2011). Functional linear regression. In The Oxford Handbook of Functional Data Analysis 21–46. Oxford Univ. Press, Oxford. MR2908018[10] Cardot, H. and Sarda, P. (2011). Functional linear regression. In The Oxford Handbook of Functional Data Analysis 21–46. Oxford Univ. Press, Oxford. MR2908018

11.

[11] Comte, F. and Johannes, J. (2010). Adaptive estimation in circular functional linear models. Math. Methods Statist. 19 42–63. MR2682854 10.3103/S1066530710010035[11] Comte, F. and Johannes, J. (2010). Adaptive estimation in circular functional linear models. Math. Methods Statist. 19 42–63. MR2682854 10.3103/S1066530710010035

12.

[12] Comte, F. and Johannes, J. (2012). Adaptive functional linear regression. Ann. Statist. 40 2765–2797.[12] Comte, F. and Johannes, J. (2012). Adaptive functional linear regression. Ann. Statist. 40 2765–2797.

13.

[13] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression. Ann. Statist. 37 35–72. MR2488344 1169.62027 10.1214/07-AOS563 euclid.aos/1232115927 [13] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression. Ann. Statist. 37 35–72. MR2488344 1169.62027 10.1214/07-AOS563 euclid.aos/1232115927

14.

[14] Cuevas, A. and Fraiman, R. (2004). On the bootstrap methodology for functional data. In COMPSTAT 2004—Proceedings in Computational Statistics 127–135. Physica, Heidelberg. MR2173014 1170.62326 10.1007/978-3-7908-2656-2_9[14] Cuevas, A. and Fraiman, R. (2004). On the bootstrap methodology for functional data. In COMPSTAT 2004—Proceedings in Computational Statistics 127–135. Physica, Heidelberg. MR2173014 1170.62326 10.1007/978-3-7908-2656-2_9

15.

[15] Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 136–154. MR650934 0539.62064 10.1016/0047-259X(82)90088-4[15] Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 136–154. MR650934 0539.62064 10.1016/0047-259X(82)90088-4

16.

[16] Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32 962–994. MR2065195 1092.62051 10.1214/009053604000000265 euclid.aos/1085408492 [16] Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32 962–994. MR2065195 1092.62051 10.1214/009053604000000265 euclid.aos/1085408492

17.

[17] Dunford, N. and Schwartz, J. T. (1988). Linear Operators, Part I: General Theory. Wiley, New York. MR1009162 0635.47001[17] Dunford, N. and Schwartz, J. T. (1988). Linear Operators, Part I: General Theory. Wiley, New York. MR1009162 0635.47001

18.

[18] Gohberg, I., Goldberg, S. and Kaashoek, M. A. (1990). Classes of Linear Operators. Vol. I. Operator Theory: Advances and Applications 49. Birkhäuser, Basel. MR1130394 0745.47002[18] Gohberg, I., Goldberg, S. and Kaashoek, M. A. (1990). Classes of Linear Operators. Vol. I. Operator Theory: Advances and Applications 49. Birkhäuser, Basel. MR1130394 0745.47002

19.

[19] Gohberg, I., Goldberg, S. and Kaashoek, M. A. (1993). Classes of Linear Operators. Vol. II. Operator Theory: Advances and Applications 63. Birkhäuser, Basel. MR1246332 0789.47001[19] Gohberg, I., Goldberg, S. and Kaashoek, M. A. (1993). Classes of Linear Operators. Vol. II. Operator Theory: Advances and Applications 63. Birkhäuser, Basel. MR1246332 0789.47001

20.

[20] González-Manteiga, W. and Martínez-Calvo, A. (2011). Bootstrap in functional linear regression. J. Statist. Plann. Inference 141 453–461. MR2719509 1197.62068 10.1016/j.jspi.2010.06.027[20] González-Manteiga, W. and Martínez-Calvo, A. (2011). Bootstrap in functional linear regression. J. Statist. Plann. Inference 141 453–461. MR2719509 1197.62068 10.1016/j.jspi.2010.06.027

21.

[21] Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35 70–91. MR2332269 1114.62048 10.1214/009053606000000957 euclid.aos/1181100181 [21] Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35 70–91. MR2332269 1114.62048 10.1214/009053606000000957 euclid.aos/1181100181

22.

[22] Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 109–126. MR2212577 1141.62048 10.1111/j.1467-9868.2005.00535.x[22] Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 109–126. MR2212577 1141.62048 10.1111/j.1467-9868.2005.00535.x

23.

[23] Hall, P. and Hosseini-Nasab, M. (2009). Theory for high-order bounds in functional principal components analysis. Math. Proc. Cambridge Philos. Soc. 146 225–256. MR2461880 1153.62050 10.1017/S0305004108001850[23] Hall, P. and Hosseini-Nasab, M. (2009). Theory for high-order bounds in functional principal components analysis. Math. Proc. Cambridge Philos. Soc. 146 225–256. MR2461880 1153.62050 10.1017/S0305004108001850

24.

[24] Hall, P. and Vial, C. (2006). Assessing extrema of empirical principal component functions. Ann. Statist. 34 1518–1544. MR2278366 1113.62074 10.1214/009053606000000371 euclid.aos/1152540757 [24] Hall, P. and Vial, C. (2006). Assessing extrema of empirical principal component functions. Ann. Statist. 34 1518–1544. MR2278366 1113.62074 10.1214/009053606000000371 euclid.aos/1152540757

25.

[25] Hilgert, N., Mas, A. and Verzelen, N. (2013). Supplement to “Minimax adaptive tests for the functional linear model.”  DOI:10.1214/13-AOS1093SUPP.[25] Hilgert, N., Mas, A. and Verzelen, N. (2013). Supplement to “Minimax adaptive tests for the functional linear model.”  DOI:10.1214/13-AOS1093SUPP.

26.

[26] Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. I. Math. Methods Statist. 2 85–114. MR1257978 0798.62057[26] Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. I. Math. Methods Statist. 2 85–114. MR1257978 0798.62057

27.

[27] Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. II. Math. Methods Statist. 2 171–189. MR1257983 0798.62058[27] Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. II. Math. Methods Statist. 2 171–189. MR1257983 0798.62058

28.

[28] Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. III. Math. Methods Statist. 2 249–268. MR1259685 0798.62059[28] Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. III. Math. Methods Statist. 2 249–268. MR1259685 0798.62059

29.

[29] Mas, A. and Menneteau, L. (2003). Perturbation approach applied to the asymptotic study of random operators. In High Dimensional Probability, III (Sandjberg, 2002). Progress in Probability 55 127–134. Birkhäuser, Basel. MR2033885 1053.60002 10.1007/978-3-0348-8059-6_8[29] Mas, A. and Menneteau, L. (2003). Perturbation approach applied to the asymptotic study of random operators. In High Dimensional Probability, III (Sandjberg, 2002). Progress in Probability 55 127–134. Birkhäuser, Basel. MR2033885 1053.60002 10.1007/978-3-0348-8059-6_8

30.

[30] Meister, A. (2011). Asymptotic equivalence of functional linear regression and a white noise inverse problem. Ann. Statist. 39 1471–1495. MR2850209 1221.62011 10.1214/10-AOS872 euclid.aos/1305292043 [30] Meister, A. (2011). Asymptotic equivalence of functional linear regression and a white noise inverse problem. Ann. Statist. 39 1471–1495. MR2850209 1221.62011 10.1214/10-AOS872 euclid.aos/1305292043

31.

[31] R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at  http://www.R-project.org.[31] R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at  http://www.R-project.org.

32.

[32] Rudin, W. (1987). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York. MR924157[32] Rudin, W. (1987). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York. MR924157

33.

[33] Spokoiny, V. G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–2498. MR1425962 0898.62056 10.1214/aos/1032181163 euclid.aos/1032181163 [33] Spokoiny, V. G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–2498. MR1425962 0898.62056 10.1214/aos/1032181163 euclid.aos/1032181163

34.

[34] Verzelen, N. (2012). Minimax risks for sparse regressions: Ultra-high dimensional phenomenons. Electron. J. Stat. 6 38–90. MR2879672 06166950 10.1214/12-EJS666 euclid.ejs/1327505822 [34] Verzelen, N. (2012). Minimax risks for sparse regressions: Ultra-high dimensional phenomenons. Electron. J. Stat. 6 38–90. MR2879672 06166950 10.1214/12-EJS666 euclid.ejs/1327505822

35.

[35] Verzelen, N. and Villers, F. (2010). Goodness-of-fit tests for high-dimensional Gaussian linear models. Ann. Statist. 38 704–752. MR2604699 1183.62074 10.1214/08-AOS629 euclid.aos/1266586612 [35] Verzelen, N. and Villers, F. (2010). Goodness-of-fit tests for high-dimensional Gaussian linear models. Ann. Statist. 38 704–752. MR2604699 1183.62074 10.1214/08-AOS629 euclid.aos/1266586612

36.

[36] Yuan, M. and Cai, T. T. (2010). A reproducing kernel Hilbert space approach to functional linear regression. Ann. Statist. 38 3412–3444. MR2766857 1204.62074 10.1214/09-AOS772 euclid.aos/1291126962 [36] Yuan, M. and Cai, T. T. (2010). A reproducing kernel Hilbert space approach to functional linear regression. Ann. Statist. 38 3412–3444. MR2766857 1204.62074 10.1214/09-AOS772 euclid.aos/1291126962
Copyright © 2013 Institute of Mathematical Statistics
Nadine Hilgert, André Mas, and Nicolas Verzelen "Minimax adaptive tests for the functional linear model," The Annals of Statistics 41(2), 838-869, (April 2013). https://doi.org/10.1214/13-AOS1093
Published: April 2013
Vol.41 • No. 2 • April 2013
Back to Top