Abstract
Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of candidate sets and the margin parameter. The dependence is explicitly given, indicating that optimal fast rates approaching $O(n^{-1})$ can be attained, where n is the sample size, and that the proposed classifiers have the property of robustness to the margin. The main result of the paper concerns optimal aggregation of classifiers: we suggest a classifier that automatically adapts both to the complexity and to the margin, and attains the optimal fast rates, up to a logarithmic factor.
Citation
Alexander B. Tsybakov. "Optimal aggregation of classifiers in statistical learning." Ann. Statist. 32 (1) 135 - 166, February 2004. https://doi.org/10.1214/aos/1079120131
Information