Open Access
July, 1975 Estimation of Shift and Center of Symmetry Based on Kolmogorov-Smirnov Statistics
P. V. Rao, Eugene F. Schuster, Ramon C. Littell
Ann. Statist. 3(4): 862-873 (July, 1975). DOI: 10.1214/aos/1176343187

Abstract

A point estimator and a set of confidence intervals based on the Kolmogorov-Smirnov statistic are proposed for the shift parameter in the two-sample problem. Asymptotic distibution of the etimator as well as asymptotic bounds for the lengths of the intervals are derived. The two-sample results are then adapted to the one-sample problem to define an estimator and a set of confidence intervals for the center of a symmetric population.

Citation

Download Citation

P. V. Rao. Eugene F. Schuster. Ramon C. Littell. "Estimation of Shift and Center of Symmetry Based on Kolmogorov-Smirnov Statistics." Ann. Statist. 3 (4) 862 - 873, July, 1975. https://doi.org/10.1214/aos/1176343187

Information

Published: July, 1975
First available in Project Euclid: 12 April 2007

zbMATH: 0313.62026
MathSciNet: MR375609
Digital Object Identifier: 10.1214/aos/1176343187

Keywords: asymptotic distribution , center of symmetry , Confidence interval , Empirical distribution function , estimation , Kolmogorov-Smirnov statistics , Shift parameter

Rights: Copyright © 1975 Institute of Mathematical Statistics

Vol.3 • No. 4 • July, 1975
Back to Top