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ESTIMATION OF SHIFT AND CENTER OF SYMMETRY
BASED ON KOLMOGOROV-SMIRNOV STATISTICS!

By P. V. Rao, EUGENE F. ScHUSTER? AND RaMoN C. LITTELL
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and University of Florida
A point estimator and a set of confidence intervals based on the
Kolmogorov-Smirnov statistic are proposed for the shift parameter in the
two-sample problem. Asymptotic distibution of the etimator as well as
asymptotic bounds for the lengths of the intervals are derived. The two-
sample results are then adapted to the one-sample problem to define an
estimator and a set of confidence intervals for the center of a symmetric

population.

1. Introduction. Let X, X,, ---, X, and Y,, Y,, --., Y, be independent
random samples from populations with continuous cumulative distribution
functions (cdf’s) F(f) and G(r) = F(t — A,) respectively. Let F, and G, denote
the empirical cdf’s of the X’s and Y’s respectively. The Kolmogorov-Smirnov
test for the null hypothesis H,: A, = a, where a is a specified number is based

on the statistic
D, .(a) = sup, |F,(t) — G,(t + a)| .

The test rejects H, at the level a if D,, ,(a) is greater than or equal to the a-level
critical value 7,, , ,. Since small values of D, ,(a) favor H,: A, = a, it seems
reasonable to choose any value of a that minimizes D, ,(a) as an estimator for
A,. In Section 2 we will show that there exists an interval of values of @ which
minimize D,, ,(a) and propose a unique value in ‘this interval as an estimator,
Km,,,, for A,. Several properties of Em,n, including an explicit computational
formula are presented in Section 2.

Confidence intervals for A, based on D,, ,(a) are also considered. It is shown
that the 100(1 — a) 9, confidence set for A, given by {a: D,, (@) < 7 4.4} IS 1D
fact an interval (A, A,), and an asymptotic upperbound to (m + m)(A, — A,)
is presented. This upperbound is used to compare these confidence intervals
with the Lehmann intervals ([6]) based on the Wilcoxon statistic.

In Section 3 the results of the two-sample problem are used to define point
estimators and confidence intervals in the corresponding one-sample problem
of estimating the center of symmetry, ¢,, of a continuous symmetric distribution.
It turns out that the resulting estimators and confidence intervals are based on
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the Butler statistic ([2]),
D,(a) = sup, |G,(1) + G,((2a — 1)) — 1]..

Schuster and Narvarte [8] have proposed the center of the interval of all a
which minimize D,(a) as an estimator for ¢,. This estimator is similar to the
one proposed in Section 3. However, the results of Section 3 go beyond the
Schuster-Narvarte paper in that the asymptotic lengths of the confidence in-
tervals as well as the asymptotic distribution of the estimator are also presented
there. In addition, Bickel’s conjecture mentioned in the Schuster-Narvarte

paper is also verified.
Section 4 contains proofs of the results stated in Sections 2 and 3.

2. The two-sample problem. Assume that the observations are ordered within
each sampleso that X, < X, < - < X,and ¥V, < ¥, < ... < Y,. Let
2.1 D} (a) = sup, [G,(t + a) — F,(?)]
D, (a) = sup,[F,.(t) — G,(t + a)] .
Then it was shown by Rao and Littell [7] (also see Schuster and Narvarte [8])

that D}, ,(a) (D, .(a)) is a left-continuous non-decreasing (right-continuous non-
increasing) step-function of a taking jumps of (mn)~* at the points

(2.2) At = min, g { YVig-1/mier — Xid-rmier}
(A, = max,_;_p, {Yis—ryym1+1 — Xi—1y/n141})

forr = 1,2, ..., mn, where [x] denotes the greatest integer less than or equal
to x. Note that if m = n, equations (2.2) greatly simplify, and D} ,(a) and
D; ,(a) will have only n jump points. Now A, < --- <A~ A+ < -0 £ Af,
A, < A%, and At < A-. Thus D, (a) = max {D}, ,(a), D, .(a)} attains its
minimum value of (r, — 1) (mn)~* for any a in the interval [A;, A}], where
r, = min{r:A,- < A *}. As stated in Section 1, any value in this interval may
be taken as an estimator for A,. We propose a unique estimator A,, , defined by

(2.3) A, . =A% 4 A*¥),

where A* = inf 4, A** = sup 4 and 4 = {a: D}, ,(a) = D ,(a)}. It is easy to
see that [A*, A**] is a subset of [A7, A} ] and that

(2.4) A* = max{A7, A} .}, A** = min{A; _,, At} .

The following two properties of ﬁm,n are easily proved (see [7]):
(1) A, is translation invariant; that is, for any real number ¢,

AXy o X Yide, oo Y+ 0) =8, -, X, Yy -+, V) +
(2) If m = n, then the probability distribution of Em,n is symmetric about A,.
Furthermore, if one notes that
8,20 — Xy - 20 — X328, — Yy, -+ -, 28, — V)
=8, (X, X3 Yy oo, X))
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and takes ¢y = sup, [G(by + A, + x) — F(x)] in the proof of Theorem 4 of [8],
one can easily modify the proof there to show that

(3) If N = min(m, n) and v,, = O(N*-?) for some § > 0, then (B — A —
0 as N — co with probability 1.

In Theorem 1 the asymptotic distribution of A, . is expressed in terms of

certain functionals of a Brownian bridge.

THEOREM 1. Suppose F is absolutely continuous and f = F' is uniformly con-
tinuous on S = {x: 0 < F(x) < 1}. If N=m+ nand 0 < 2 < 1, then as N—
co and nN—* — 2,

Pr [N%(B,M —A) <] tends to
(2.5)  Prsupicu« {B() + Y1 — DPAF )}
+ infocyq {B(#) + Y(A(1 — DEF (1))} 2 0]
where {B(u): 0 < u < 1} is a Brownian bridge and F~'(u) = inf{y: F(y) = u}.

ReMARK 1. In the special case when f is the uniform density on (0, 1) we
have f(F~*(#)) = 1, 0 < u < 1, and the asymptotic distribution of N *(Am . — D)
is given by

Pr [SUPoc,u<1 B(¥) + infyc e B(u) = —29(A(1 — 2)Y],
an expression which depends upon the known joint distribution of sup p(x) and
inf B(u) given in [4].

As stated in Section 1, the set {a@: D, (@) < 7p.... Will be a 100(1 — a) 9%

confidence set for A,. From (2.1) and (2.2) it follows that this set is the interval

{a: A, <ac< 3,,}, where
AL = MaX;.g (Yl;k—mnrm’”,a+1 ~ X*)
AU = ming . (¥,* — Xk*—mnm,n,aﬂ) >
(2.6) K ={mny, . .m0y, ..+ 1, -, mn},
X* = Xi-ymier s and
Y* = Yimie -
It must be noted ’ahat for a specified @, the interval may be empty (corre-
sponding to the case A, < A;), but such intervals are obtained in a portion of

events for which a true null hypothesis will be rejected.
Theorem 2 gives almost sure asymptotic upper bounds to the length

NYA, — A)).

THEOREM 2. Let { be a point for which (1) F({) = p, 0 < p < 1; (2) F is twice
differentiable in a neighborhood of ¢, and (3) f(C) = F'(§) > 0, and f' is bounded
in a neighborhood of {. Thenas N=m + n— oo and nN-' -1, 0< 1< 1,

2d,
— AOGA — )

where d, = lim,,_, (mn/N)tr,, . .. Further, if {, is a point and {,} is a sequence

(2.7 lim sup N4, —R) < w.p. 1



ESTIMATION OF SHIFT AND CENTER OF SYMMETRY 865

of points such that {;, — &y, () — f(&,), and (1), (2) and (3) are satisfied at each
Cy» then f(Q) in the right-hand side of (2.7) may be replaced by f(&,).

REMARK 2. The best bound in (2.7) is obtained if { can be taken as the mode
of (a unimodal) density f. For many standard densities this will be the case
since even when the mode { will not satisfy (1), (2) and (3), it is often possible
to find a sequence {{,} converging to { and having the required properties. The
double exponential density is an example of this situation.

Theorem 3 is a stronger version of a result by Lehmann [6] in that the
convergence here is with probability one whereas Lehmann established con-
vergence in probability. Sen and Ghosh [9], page 195, obtained the corresponding
result with probability 1 for the one-sample case. The present result is in a
specific setting to serve our immediate needs and the proof is therefore much
shorter than the proof in [9]. A crucial step in both cases utilizes a generali-
zation of a result by Bahadur which was proved by Sen and Ghosh [9], page 193.
Let (A,, A,) denote the 100(1 — &) 9% Lehmann [6] confidence interval for A,.

THEOREM 3. Assume F has a bounded density f with a bounded derivative f'.
Thenas N— oo, AN' - 2,0< 2 < 1,

IV P S P

(BA(L — ) § fi(x)dx

where K, is the (1 — p)th quantile of the standard normal distribution.

w.p. 1,

The comparison of confidence intervals based on the ratio of their asymptotic
lengths was employed by Lehmann [6]. Since the remark after Lemma 3 in
Section 4 shows that N*(A, — A;) does not converge to a constant, we consider
in this paper the asymptotic upper bound for the ratio of lengths obtained from
Theorems 2 and 3, namely,

(A By—By) 4 (12)4,§ fix) dx
—8)~ Ko f®)

where & is taken as the mode of f. Following Lehmann’s 1nterpretatlon [6] page
1510, modified for the present situation, if the intervals (A,, A,) are based on
m + n = N observations and the intervals (AL, AU) arebasedonm’ + n’ = N =
N¢ observations, then with probability one, the length L’ = = A, — A, will be
less than or equal to the length L = A, — A for large N.

lim supy o ~L—=£7

TABLE 1
Values of ¢ for selected choices of a and f
a Normal Double Exponential Cauchy
.10 1.8166 1.2846 .4089
.05 1.6996 1.2018 .3825
.025 1.6184 1.1443 .3642
.01 1.5500 1.0960 .3489

.005 1.5080 1.0664 .3394
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Table 1 gives the values of ¢ for some selected densities f and critical levels a.

From an inspection of Table 1, it is seen that the confidence interval pro-
posed in this paper does almost as well as Lehmann’s for double exponential
populations and does extremely well for Cauchy populations. Thus we may
conclude that the confidence interval proposed here may be preferable over
Lehmann’s if the underlying population has heavy tails.

3. One-sample problem. Let Y,, Y,, -.., Y, be the order statistics of a random
sample of size n from a population with cdf G(y) = F(y — 6,), where F is con-
tinuous and F(x) = 1 — F(—x). The estimation procedures of Section 2 are
readily adapted to the problem of estimating 6, by setting X, = —Y,, X; =
—Y,. -+, X, = —Y, and letting F, and G, be the empirical cdf’s of the X’s
and Y’s respectively. Then since the X’s and Y’s are samples from F(x + 6,)
and F(x — 6,) respectively, and since F,(x) = 1 — G,(—x~), an estimator, 4,
of ¢, may be chosen to minimize

D, (a) = sup, |F,(t) — G,(t + 2a)|
= sup, |1 — G,(—1) — G, (t + 2)|
= sup, [G,(1) + G((2a — 1)) — 1.

From Section 2 it follows that §,+ and #,~ are given by

3.1) 0, =3min, ., (Ys + Y,ssr) >
0, = 3 max, g (Yirsr + Yacpsd) »
forr=1,2, ..., n, and that any pointin [0, 6} ] where r, = min{r:6,~ < 6,*}

will minimize D,(@). As in the two-sample case, we propose estimation of ¢, by
8, defined by

(3.2) b, = 306* + 6**),

where 6* = inf B, ** = sup B and B = {a: D,*(a) = D, (a)}.

Schuster and Narvarte [8] have proposed §(6;, + 6 ) as an estimator for 6,
and derived expressions equivalent to (3.1). They have also established some
consistency and symmetry properties for their estimator (see Theorems 2, 3
and 4 of [8]). All these properties are satisfied by d, of (3.2) as can be easily
seen by following the proofs of the corresponding properties (1), (2) and (3) in
the two-sample case. The asymptotic distribution of 4, can be obtained in a
manner analogous to the proof of Theorem 1 and is given in Theorem 4.

THEOREM 4. If F satisfies conditions of Theorem 1 and F(t) = 1 — F(—1), then
as n — oo,

Pr[nt(@, — 0,) < y] tends to
Pr [supyc,<; {W(#) + (2)AF ()}
+ infocugy (W) + QPYfFw)} = 0],

where W(u) is a standardized Weiner process.
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REMARK 3. As in the two-sample case, the uniform density leads to a
simplification of the asymptotic distribution of 4,. In fact, if f is the uniform
density on (6, — ¢, 0, + c), then the asymptotic distribution of n#(d, — 6,) is the
same as the distribution of ¢/2[sup,.,., W() + inf,.,., W(u)], a quantity which
can be evaluated by the known joint distribution of sup W(u) and inf W(u)

(See [5], page 329.)
REMARK 4. (Bickel’s conjecture). Suppose the random variable 6 is chosen

so as to minimize the function

0(y) = SUPugusy | W(4) + 22f(F (W) -

0*(y) = SUPosusy (W(k) + 22f(F(u))

07(y) = —infogyzy (W) + 2f(F~()))
are continuous monotone functions and d(y) = max{d*(y), 6-(y)}. Since

Pr[o*(y) =do-(n]=0
by Lemma 1 in Section 4, it is easy to see that
Prf < y] = Pr[3*(y) = 0-()] -

Thus the asymptotic distribution of n*(@ — 6,) is the same as that of §, and
hence Theorem 4 indicates that Bickel’s conjecture, given in Remark 3 of
Schuster and Narvarte [8], holds for the minimax estimator §. In the two-
sample case the corresponding result would say that N 44, , — A,) has the same
asymptotic distribution as A where A is chosen so as to minimize (see Lemma 1)

8()) = SUPsguzs [B) + YA — DFF(w)| -
As in the two-sample case, confidence intervals for 6, may be based on D, (a).
A 100(1 — a) % confidence interval is given by
(02, 00) = {a: Do(a) S 12} »
where 7 , is the a-level critical value for the statistic D,(¢) for testing H,: 6, =
6. The values of 7%, can be obtained from Chatterjee and Sen [3]. It is readily

seen that

(3'3) éL = 0;0, > éU = 0;"0, s

Now

and

where r, = niy¥,.
Theorem 5 is the one-sample version of Theorem 2 and can be proved in a
similar manner.

THEOREM 5. Under conditions of Theorem 2, as n — oo,
2%d *

p.1,
o P

lim sup n¥(@, — 8,) <

where d * = lim,_ nty* .
a n—0 Tn,d
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Now Sen and Ghosh ([9], page 195) have shown that if f satisfies the
conditions of Theorem 3 and is symmetric, then the Lehmann interval (5 2 0y)

satisfies
Ka/ 2

limn_m ni(éU —_ éL) = W

w.p. 1

Therefore,

(3.4) tim sup, ., {0z = 0u) o 614" § fi(x) dx
(aL —_ 0[]) Ka/ﬂf(f)
where & may be taken as the mode of f, if the mode satisfies the conditions of
Theorem 5. The right-hand side of (3.4) provides a measure of the relative

efficiency of the two procedures.

w.p. 1,

TABLE 2
Values of the right-hand side of (3.4) for selected f
a Normal Double Exponential Cauchy
.05 1.97 1.39 0.44
.01 1.89 1.34 0.42

From an inspection of Table 2 it appears that the confidence intervals of this
paper may be preferable to the Lehmann confidence intervals if the underlying
distribution has heavy tails.

4. Proof of theorems.
LEMMA 1. Under the conditions of Theorem 1,
(i) Pr[supes,s; {B(n) + y(A(1 — DPH(F-(w))}
= —infocus {B(r) + (A1 — YHEF @)} = 0
and under the conditions of Theorem 4,
(if)  Pr[supog, gy {W(k) + 24f(F~'(u))}
= —infyegy (W) + 2/(F- W)} = 0.

Proor. We shall first prove (ii). Let h(u) = 2}yf(F-*(u)), and let &(u) =
W(u) + h(u). Without loss of generality, assume y > 0. Now

Pr [supocus; §(4) = —infogusy §W)] = Lo Pr[SUPogus, [6(#)] = SUPucusgy [€(1)]]

where the summation extends over all rational pairs (r, s) with 0 < r < s < §.
Hence it suffices to show that

Pr[supyg,s, & §(#) = sUp,g,<; + E@)] =0

for each rational pair (r, s), with 0 < r < s < 4.
There are four cases to be considered. We shall show that

Pr [supy,<, §(#) = sup,<,<; (—6@))] = 0.
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The other cases can be handled in similar fashion. In this direction we observe
that
Y = SUpyg,<, (§(#)) — SUP,<,<y (—E(1))
= {SuUpogus, (W (1)) + h(u) + W(r))}
+ {—SUp,cusy — (W) — W(s) + h(u))} + {W(s) — W(n)}
= Xl -+ X2 + Xa )

where X, X,, and X, are the first, second, and third terms, respectively, in the
above expression. Now X, depends on W(u) only to time r, and since X, and
X, depend on independent increments after 7, X;, X,, and X, are independent.
Since X; is absolutely continuous, so is Y, and hence Pr[Y = 0] = 0, which
concludes the proof of (ii).

We now prove (i). In this case, let A(u) = p(A(1 — A))PA(F'(u)), let &(u) =
B(u) + h(u), and assume y > 0. The proof is more involved and does not
depend on the proof of (ii). Take

(4.0) 0% = SUPyg,<; () and 07 = SUPyg,<; (—E(1)) -

Since S(1 — u) is also a Brownian bridge we can without loss of generality
assume A(0) = A(1). We will also assume the process § is of the form S(u) =
W(u) — uW(1) where W is a Brownian movement process. For each positive
integer n we define functions d,* and d,~ on the reals by

(4'1) dn+(z) = Suposuél—l/n (E(ll) - le)
and
(4.2) d,(2) = SUPoguzi—ym —(E(u) — zu) .

We note that —d,* and d,- are non-decreasing functions (of z) and with
probability one the function

(4-3) H,(+) = d,*(+) — d,(+)

will have unique zeroes. The first mentioned property is easily checked. At
least one of the two functions in (4.1) and (4.2) is strictly monotone at each z
for which one of the two sups is attained in (0, 1 — 1/n]. If z, is a zero of H,,
and both sups in (4.1) and (4.2) are attained at zero, then A(0) = d,*(z,) =
d,(zy) = —h(0) which says #(0) = 0 and W(u) + h(u) — z,u = O for all u in
(0,1 — 1/n]. Since this event has probability zero, H,(.) will (w.p.1) have
unique zeroes.
From h(0) = k(1) it follows that

(“4-4) Pro* =067] = X, Pr[d,*(W(1)) = d,~(W(1))]

(this inequality results in effect from the observation that (w.p.1) neither sup in
(4.0) is attained only at # = 1). Hence our proof will be complete if we show

a = Pr[d,*(W(l)) = d,~(W(1))] = Pr[B,(W)]
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equals zero for each n. In this direction, for each rational r in (1 — 1/n, 1] we
define a Brownian motion V, by reflecting W at r. Then a = Pr[B,(V,)] for
each rational r in (1 — 1/n, 1]. Now

Cor = Bu(V>)
= {SUPozusi-ym (WH) + h(u) — u(2W(r) — W(1)))
= SUPogygi-ym — (W(H) + h(u) — u2W(r) — W(1)))}.
If s is also a rational in (1 — 1/n, 1] different from r then We C, , n C, , implies
2W(r) — W(1) and 2W(s) — W(1) are both zeroes of H,. Since zeroes of H, are
almost surely unique and {2W(r) — W(1) = 2W(s) — W(1)} is an event of pro-
bability zero, we conclude P,[C, . n C,,] = O for each pair of distinct rationals
in (1 — 1/n, 1], a must be zero and the proof is complete.

LEMMA 2. Let X}, X, -+, X, and Y,, Y,, - - -, Y, be random samples (not neces-
sarily independent) from a continuous population F. Let F, and G, denote their
respective empirical cdf’s. If S} (@) = SUpP, g [Gu(t + @) — F,(t)] and S, .(a) =
SUP;esia) [Fu(t) — Ga(t + a)], where S(a) = {x: xe S, x +aecS},a>0,and S =
{x:0 < F(x) < 1}, then

() Dz.n(@) = Sy.a(a@) (W-p- 1)
(il) Dy a(a) = max{0, S, .(a)} (w.p. 1)
(ifi) Pr{Df,.(a) = D; (@)} = Pr (S} (@) = S;..(a)}
and
(iv) Pr{D; .(a) > D, (@)} = Pr{S; .(a) > S, .(@)} — Pr{S; .(a) = O}.

Proor. Let S = (¢, d). Then t € S(a) implies that c < t < d —a. If t < c,
then sup, ., {G,(t + a) — F,(t)} = G,(c + a) and sup,., ,{G,(t + a) — F,(¢)} =
1 — F,(d — a) (w.p.1). Thus (i) follows since

lim, .+ [Gy(t + @) — Fo(t)] = Gy(c + @) (W.p. 1)
lim,_ 4o [Gu(t + @) = Fu()] = 1 — Fo((d — @)7) (W.p-1).
To establish (ii) note that (w.p. 1)
sup{F,(f) —G,(t+a):t<cor t=d—a}=0.

and

(iii) follows from (i) and (ii). (iv) is an easy consequence of the fact that
D}, (a) = D;, ,(a) = 0 implies that S} ,(a) = 0 and D}, ,(a) = D, ,(a) > 0 im-
plies that D, ,(a) = S, .(a) and hence that S ,(a) = S}, .(a).

Proor oF THEOREM 1. We shall prove the theorem for y > 0. The case
y < 0 is similar. Since Em,n is translation invariant we may take A, = 0. From
(2.3) we get A* < KW, < A** and (2.4) implies that Em,n is a continuous random
variable. Also,

(A** < Y[N¥) = (D, o(yIN?) > Dy ((yINY)
(D5 n(YIN?) Z Dy (yINY) = (A% < yINY) .

and
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Thus
Pr[D} (yINY) > D, (yINH] < Pr[A, . < (y/N¥)]
= Pr[D; .(y/N*) = D, .(y/NY)] .
Hence from Lemma 2 it follows that
Pr [S% .(yIN?) > S, ((yINY] — Pr[S; (y/N?) = 0]
< Pr[A,, < y/NY
= Prs;.(/NY) = S5 .(/ND)].
Therefore, in view of Lemma 1, it suffices to show that (in some probability
space) as N — oo and nN~' — 1,

M (Y 52,01V = supies (BEO) + (L — D)D) + o,(1)
and

@ () 550N = —infes (BEO) + A1 — DYDY + 0,(1)

To establish (1) and (2), we follow Shorack’s approach (see [10], Appendix)
and use the representation X; = F-%(§,) and Y; = F~(y;), where &, ..., &, and
T1» * + > 7, are independent uniformly distributed random variables on (0, 1).
If F,* and G,* are empirical cdf’s of the &’s and 7’s respectively, and U, (1) =
mi[F,*(1) — t], V,(t) = n*[G,*(t) — 1], then there exist independent Brownian
bridges {U(7): 0 < ¢t < 1} and {V'(r): 0 < ¢t < 1} on some probability space such
that

SUPycict | Un(t) — U(1)| — 0,
and

SUPoci<a [Vau(t) — V(5] — O,
where the convergence holds for every sample path of the U,, and ¥, processes.
Now let B(r) = (1 — A)V(r) — AtU(r). Using the fact that

limy o SUPsesiywty INHE( + yIN?) — F(0)} — yf()] — 0,
it is easy to see that, with probability one,
(NA(L — 2))485 w(YIN?) = SuPsesiymn {(1 — DV(F(1 4 y/N*¥) — 2U(F(1))
+ (A1 = )Hf(0} 4 o(1)
= SUPsesqs (AF(D) + (A1 — D)D)} + o (1)
= sup.es {A(F(1)) + (A1 — )f(0)} + o(1) ,
which establishes (1). In a similar fashion one can show that (2) holds.

Proor oF THEOREM 4. Since @, is translation invariant we may take 6, = 0.
Furthermore, by letting X, = —Y,,i=1,2, --., n, we obtain X, -.., X, and
Y,, --+, Y, as random samples from a symmetric population F. If EM denotes
the estimator (2.3) for these two samples, we have 3,,',, =20,, so that
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Pr[ntf, < y] = Pr[N#A, , < 2.2%y], where N=n + n. Since Lemma 2
applies even for dependent samples, we can follow the proof of Theorem 1 with
A=%and N =2n. The U and V processes are now dependent with U(r) =
—V(1 — 1. Writing W(t) = (1 — HU(K) — V(1) = (V(t) + V(1 — 1)/2}, we
see that W(r) is a standardized Weiner process on (0, 3). Hence Pr [N ’-‘An S
2-24y] tends to Pr [sup,.s (W(F(1)) + 20(1)} + inf,os {W(F(1)) + 20(1)} Z O]-
The desired conclusion follows by noting that W(F(r)) + 2tyf(f) is an even
function.

We shall now state and prove Lemma 3 used in the proofs of Theorems 2
and 5.

LeMMA 3. Let N = m + n and assume nN-* - Aas N — o0, 0 < A < 1. If &,
and &, are two points satisfying conditions (1), (2) and (3) of Theorem 2, then

1 1
F& T e

N¥By = B)) = N e )|+ Zuat 60 + R

where

— Ni[Fn(8) — Gul(§) | Gu(§y) — Ful&)
Zm,n(éa&)—N*[ L —|— and R,— 0 W.P.l-
o f&) f&) '
PrOOF. Assume without loss of generality that A, = 0, and let p, = F(§,) and
p, = F(§,). For sufficiently large m and n, r,,, < min (p, p;). Thus from
(2.6),

~

* . %
AL g Y[m'ﬂpll—mnrm’n,“+1 - X[mnpll ’ Y[mnp]]—mnrm'n'a+1 2 Y[n(pl—rm',,,a)] ’
and
*
X[mm)l] é X[mp1]+1 .

Hence

L A 2 Y[n(pl Tmyn,l T X[mP1]+1 .
Similarly,

A [np2]+l X[M(Pz‘Tm,n,a)] ’

so that

AU - AL = (Y[np2]+1 - X[m(pz—rm,n,a)]) + (XIMP1]+1 - Y[n(pl—rm,n,a)l) :
Thus Bahadur’s quantile representation ([1], Lemma 3) yields

M@, - By s W (6 + 2= 2D ;(g;@) — (6 +2= Lo = Ea(6)) ]

+ N? \:(52 + P ;(21;(52)> _ <§2 + P Tm,fn(,gz)_ Gn($2)>:|

+ O(N-tlogN) w.p.1,

which proves the lemma.
Note that since with &, = &,, Z,, (&, &,) is asymptotlcally normal with mean
zero and variance of order 1, it follows that N*A, — A,) will not converge (in

probability) to a constant.
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Proor oF THEOREM 2. Follows by noting that &, = &, implies Z,, ,(§,, ;) = 0
in Lemma 3.
Theorem 5 can be proved in a manner analogous to the proof of Theorem 2.

Outline of the proof of Theorem 3. Set up the following quantities:

(1) S,.(a) = sum of ranks of X’s in pooled sample of X’s and (Y — a)’s,

(2) H, .(x,a) = N [mF,(x) + nG,(x + a)];

() Tun(@) = § Hyu(x, a) dFp(%);

(4) Wan(@) = NHTpa(a@) — Tna(0) — a(1 — 2) § f3(x) dx].

The first step is to prove the asymptotic linearity of 7,,(a), i.e., to prove
SUP,4i<xt 10g & Wamn(@) — O with probability one. This follows in a straightforward
manner by utilizing the generalized Bahadur result.

The desired conclusion can then be established by observing S,.,.(a) =
m(m + n)T,,,(a) and employing the asymptotic normality of S,,(0).
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