Abstract
Robust tests for linear models are derived via Wald-type tests that are based on asymptotically linear estimators. For a robustness criterion, the maximum asymptotic bias of the level of the test for distributions in a shrinking contamination neighborhood is used. By also regarding the asymptotic power of the test, admissible robust tests and most-efficient robust tests are derived. For the greatest efficiency, the determinant of the covariance matrix of the underlying estimator is minimized. Also, most-robust tests are derived. It is shown that at the classical $D$-optimal designs, the most-robust tests and the most-efficient robust tests have a very simple form. Moreover, the $D$-optimal designs provide the highest robustness and the highest efficiency under robustness constraints across all designs. So, $D$-optimal designs are also the optimal designs for robust testing. Two examples are considered for which the most-robust tests and the most-efficient robust tests are given.
Citation
Christine Müller. "Optimum robust testing in linear models." Ann. Statist. 26 (3) 1126 - 1146, June 1998. https://doi.org/10.1214/aos/1024691091
Information