Abstract
Let $X_i$ be i.i.d. $X_i \sim F_\theta$. For some parametric families $\{F_\theta\}$, we describe a monotonicity property of Bayes sequential procedures for the decision problem $H_0: \theta = 0$ versus $H_1: \theta \neq 0$. A surprising counterexample is given in the case where $F_\theta$ is $N(\theta, 1)$.
Citation
Lawrence D. Brown. Eitan Greenshtein. "Two-Sided Sequential Tests." Ann. Statist. 20 (1) 555 - 561, March, 1992. https://doi.org/10.1214/aos/1176348539
Information