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TWO-SIDED SEQUENTIAL TESTS

By LAWRENCE D. BROWN AND E1TAN GREENSHTEIN

Cornell University and Bar Ilan University

Let X; beiid. X; ~ Fy. For some parametric families {Fy}, we describe
a monotonicity property of Bayes sequential procedures for the decision
problem H: 6 = 0 versus H;: 6 # 0. A surprising counterexample is given
in the case where Fy is N(6, 1).

Introduction and preliminaries. Let X, X,,..., X,,, m < «, be i.i.d.
with X; ~ Fy, where F, is a one-parameter exponential family. Assume X; are
canonical observations and 6 the canonical parameter. We will consider the
two-sided sequential testing problem H,: 6 = 6, versus H;: 6 # 6,. For recent
discussion of this problem see Emerson and Fleming (1989) and Jennison and
Turnbull (1990).

The action space in such a problem is a pair (N, 1), where N = 1,2,...,m
is the stopping time and 7 is the terminal decision, is 0 or 1. The loss function
is denoted L(6,(N, 7)) = ¢(N — 1) + L(6, 7). Here ¢ represents the cost of one
observation; the cost of the first observation is 0 and it is always taken.

In this paper we assume the following type of loss function:

L(6,0) is nonincreasing for 6 < 6, and nondecreasing for
(1) 6 >0,, L(6,1) is nondecreasing for 6 < 6, and nonincreas-
ing for 6 > 6,,.

We will consider only procedures based on S, = X, + -+ +X,, as in Brown,
Cohen and Strawderman (1979) (to be referred to in the sequel as B.C.S.). This
can be justified by sufficiency and transitivity of S,. A procedure A consists of
a set of nonnegative functions §,,(s,) defined for every s, such that
Y2_8,,(s,) = 1. The quantities §,,(s,), i = 0, 1,2, represent, respectively, the
conditional probability of accepting H,, accepting H, and taking another
observation when n observations have been taken and S, =s,. Such a
procedure A implicitly defines the stopping rule, N.

Define the risk function R(6,A) = E,L(6, A). The Bayes risk for a prior
w(0) is

r(m,A) = [R(68,4) dm(6).

Let R be the real line and n some additional point. Denote R = R U {n}.
Map to the event N =n, S;=s,...,8, =s,, the point (sy,...,s,,
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m,M,...)in By X Ry X -+ X R,,. Thus, if a point has nth coordinate , this
means that sampling has stopped before stage n. This mapping induces a
measure on R; X -+ X R, under a parameter 6 and a procedure A, denote it
by H,. Denote H,, the measure defined by: H,_ \(dx) = [Hy\(dx) dw(9).

DEFINITION 1. A sequential procedure A for the preceding problem is said
to be monotone under the prior 7 if for every n, there exist numbers
—®© < af < a} < aj < aj <o such that: For almost every real value s, under
H_,, 8,,(s,) =0if s, < a2 ors, > a3, 8..(s,) =0if a} <s, < a?; 82,,(3 ) =
if s, <a}, s,>a} or a} <s, <a% Certain obvious randomlzatlons are
allowed when s, = a?,i = 1,2, 3 4.

It was proven in B.C.S. that in a two-sided testing problem, if the distribu-
tions, loss function and prior distribution are all symmetric, then every Bayes
procedure is monotone. In this work we will investigate what happens when
symmetry is not assumed. The following conjecture is also implicit in B.C.S.:
When the X; are i.i.d. normal with mean 6, every Bayes procedure is mono-
tone. In Section 1 we show this conjecture is false. In Section 2 we describe a
(weaker) complete class property.

1. Counterexample. We consider the two-sided hypothesis testing prob-
lem H;: 6 = 0 versus H,: 6 + 0 for the mean of a normal distribution. The
example will be of a Bayes procedure that decides H, for values of X,
belonging to three disjoint intervals. This contradicts the monotonicity conjec-
ture expressed in the previous section.

Let 6, <6, =0 < 6,. Denote @, = {0} and ©, = {6,, 6,}. Consider a two-
stage testing problem (i.e., m = 2) with

£o.(N.0 ¢(N-1)+1, ifeee,,
(07( ’))_ C(N—l), if0€00,

L(6,(N,1 ¢(N-1), if 0 € 6,,
(6,(N,1)) = c(N-1)+1, ifoeao,.

Let the prior give mass (m, my, m,) to the points 6,,0,0,, respectively.
Denote by x{ the unique value such that Max, P(@olxl) = P(0,lx¥). Here
P(Oylx,) denotes the posterior probability of @0 glven X, = x,. [The unique-
ness of x¥ follows by showing, similarly to Lemma 1 (1n Section 2), that
po(s) — W changes sign twice at most in the strong sense for every W and if
there are two sign changes the function is first positive.]

Suppose

(i) P(®lx}) = 3.
Let p,(x;) = 1 — P(O,|x,) and let B,(s) denote the conditional Bayes risk of a
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procedure which takes two observations, conditional on S; = s. Let
A(xy) = Min(p,(x1), po(*1)) — (By(%1) — ¢).
In our case by (i), p,(x;) < py(x;) and A(x,) can be written as
A(x,) = P(O|x,) — E(Min(P(O,x; + X;), P(®y]x; + X,))|x,).

Notice that A(x) does not depend on ¢ and that the Bayes action conditional
on X, = x, is to take one more observation if and only if A(x;) — ¢ > 0. Let
x7* be the unique value such that Max, A(x;) = A(xF*). [It can be shown
that x¥* is unique by writing p,(s) — B(s) — W similar to (i) in Lemma 3,
and showing it has at most two sign changes for every real number W. Notice
that this method applies only when the horizon is of size 2; it seems that the
analogous function py(s) — B (s) — W, as defined in Section 2, can have more
than one local maximum when n > 2.] Suppose that
(ii) xF o+ af*,

We now show that when (i) and (ii) are satisfied for some 6,, 6,, Ty, Ty, then
a counterexample can be constructed. Define a new problem with 0, 0y, 7,
o, gy €, Where 0, = 0, 7, = 7, — (/2), 7rg = 7y + &, 7y = wy — (£/2).

Define E, = {xIIP(®0|x ) > P(O,lx,)}. E, is an interval by Lemma 1 of
Section 2. Choose ¢ > 0 small enough so that £** ¢ E,. Such an ¢ > 0 must
exist by (ii) and by continuity considerations. Also by continuity consideration,
there exists an ¢, > 0 such that A(Xf*) — ¢; > A(x,) for every x, € E,. Take
¢ = A(xT*) — £,. In our new problem there are two disjoint separated intervals
containing £} and %}*, respectively, such that: The Bayes procedure decides
H, if x, is in the interval containing x7; it takes one more observation if x, is
in the interval containing %} and it decides H, otherwise. Hence there are
three separate intervals where the Bayes procedure decides H, for values x;
in these intervals. Such a procedure is not monotone.

A numerical example is the following: Take 6, = —1, 0,=0, 0, = 2.
Straightforward calculations show that in order to get

27 =0 and P(Ox}f)=1/2,

we should choose 7; = 0.219, 7, = 0.240, 7, = 0.539. Using numerical inte-
gration we get

A(x¥) = A(0) = 0.259,  A(0.2) = 0.266;

that is, x7 # x7*. Table 1 shows some further values of P(®lx;) and A(x,).

REMARKS. (i) As noted before, when the size of the horizon is greater than
2, it seems there can be more than one local maximum to A(-). If so, examples
can be given with more than three disjoint intervals where H, is accepted by a
Bayes procedure. (ii) In principle, the above example leaves unsettled the
monotonicity conjecture for possibly open-ended procedures. However, in light
of the preceding results, we believe that the monotonicity conjecture is false in
this case also. (iii) In constructing the counterexample we have used the fact
that the cost of the first observation is zero, and hence the first observation is
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TaBLE 1

xy P(Qylx,) Alx,)
- 04 0.466 0.206
-0.3 0.480 0.223
-0.1 0.497 0.250
x¥ =100 0.500 0.259
0.1 0.497 0.265
x¥* = 0.2 0.489 0.266
0.3 0.475 0.263
0.4 0.457 0.256
0.5 0.433 0.245

always taken. It is not clear whether a counterexample can be given when the
cost is ¢ per observation including the first one.

2. Complete class theorem. Assume X; are i.i.d. normal with unknown
mean 6. As we have shown, for two-sided sequential testing it is not true that
every Bayes procedure is monotone (unless one assumes further symmetry). In
view of this, the following Theorem 1 seems to give the best possible general
monotonicity statement for the class of Bayes procedures in such a case.

We will first review some facts about total-positivity which will be needed
for the proof of Theorem 1. Some references on this subject are Karlin (1968)
and Brown, Johnstone and MacGibbon (1981).

DeFNITION 1. The function ¢(x): R — R changes signs at most n times if
and only if there exist —©» =a,<a; < - <a, <a,,; = ® such that ¢(x)
preserves its sign on (a;,a;,,), i =0, ..., n, that is, it is either nonnegative or
nonpositive on each interval.

Let {G,: 0 € 0 C R} be a family of distributions on the real line.

DerFINITION 2. {G,} is TP, if for any function ¢(x), that changes sign at
most n — 1 times, h(0) = E,¢(x) changes signs at most n — 1 times, and if it
does change sign n — 1 times, then it does so in the same order as ¢. {G,} is
STP, if, in addition, for any ¢ as above which is not identically zero, the
function h(#) changes sign at most n — 1 times in the stronger sense that
thereare ay= —© <a,; < '+ <a,_; < =a, such that h(0) preserves its
sign on (a;,a;,,) and h(#) can be zeroonly at a¢;,, i = 1,...,n — 1.

Suppose X; ~ F, are ii.d. and m(8) is a prior distribution on 6. Denote
by v"*Xds, .,ls,), the conditional distribution of S,.; given S, =s, and
prior 7(0).
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In the sequel we will require v"*(ds, , ,[s,) to be STP, with respect to the
parameter s,. Denote by Fy'(ds) the distribution of s, under 6, and let
Fy*!(ds, ,1ls,) be its conditional distribution conditional upon S, = s,,.

PROPOSITION 1. Suppose for some’ 6, € 0, F;**(ds,, ,,|S, = s,) is (S)TP,
with respect to the parameter s,. Then for every (), v**(ds, ls,) is
(8S)TP,.

Proor. See Greenshtein (1990). O

ProposiTION 2. F;'*Xds,,,|S, = s,) is STP, (i.e., STP, fork = 1,2,...)
in s, for every n when {F,} is any one of the following: binomial 6 = p;
exponential 8 = A when \~! is its expectation; Poisson 8 = A, where A is its
expectation; geometric 8 = p; normal 6 = u, where u is its expectation.

Proor. Immediate from Chapters 7 and 8 in Karlin (1968). O

THEOREM 1. Consider a two-sided sequential testing problem. Assume for
every m(@), v"*!(dsls,) is STP, in the parameter s,. Then every Bayes
procedure A = {3,,} is of the following type: There exist numbers o < a’ such
that 8,,(s,) =1 if s, € (a%,a%) and 8,,(s,) =0 if s, & [a},a%] for almost
every s, under H_,.

INTERPRETATION. The theorem says that the Bayes procedure stops and
accepts H, whenever S, € (a%, a’). It cannot continue sampling for any such
S,. It may also accept if S, = a% or a%. For values of S,, outside of [a}, a%],
the procedure might either continue sampling or stop and decide H,, but it
cannot stop and accept H,.

Before proving the theorem, some further lemmas and notation are needed.
Let

p™(s,) = fL(O,T)‘tr”(d0|sn), r=0,1.

Here w"(d#6ls,) denotes the posterior distribution given S, =s,. Assume a
finite horizon where X,,...,X,, X, .4,..., X, ., are the available observa-
tions and X;,..., X, have already been observed (n + 2 = m). Denote by
B +*(s), the conditional additional Bayes risk of a procedure that takes at least
one more observation and proceeds optimally, conditional on S, =s,. (The
definitions of p and B are extensions of the definitions in Section 1.) Then,

»:4

Br+k(s,) = [ Min(c + Bth(s), 0 + pi*1(s),c + pi*(s))v" *1(dss,).
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Of course,

Brt(s,) = [Min(c +p5 '(s), ¢ + pi " !(5))r"  (dsls,)-

LemMma 1. For every real number W, pi(s) — pg(s) — W changes sign at
most twice. If there are two sign changes, then it is first negative. Moreover the
function is zero only at its crossing points.

Proor. From condition (1) stated in the Introduction, the proof follows as
in Karlin (1955). O

LEMMA 2. pi(s,) = [p" (s dsls,), 7= 0,1
ProoF. See Sobel (1952). O

LEMMA 3. B7**(s) — pi(s) + W, changes sign at most twice for every real
number W. If there are two sign changes, it is first negative. Moreover the
function is zero only at its crossing points.

Proor. The proof is by induction on the number of remaining observa-
tions. The general induction step is as follows:

Br*(sn) —p5(s,) + W

= Br*(s,) — [p5 ()" (dsls,) + W

= fMin(c +Brit(s) —pg i (s) + Wc+w,

¢+ pPti(s) — pati(s) + W)t i(dsls,).

All the functions in the brackets change signs twice at most and in the right
order. The last fact is true by the induction hypothesis and by Lemma 1.
Hence the Min of the three functions changes signs twice at most and if it
does, it is first negative. The desired conclusion follows now by STP; of
vt 1(-]s,). O

PROOF OF THE THEOREM. For the finite horizon case, the proof follows from
Lemmas 1 and 3 letting W = 0. For the infinite horizon we proceed as in
Chow, Robbins and Siegmund (1971). Define B(s,) to be the additional risk of
a procedure that takes at least one more observation and proceeds optimally
conditional on S, = s,. For the M truncated problem we get by their Theo-
rem 4.4 and 4.7 that BM(s,) =y .. B(s,). Thus B;(s,) — p;(s,) has at most
two sign changes and if there are two sign changes, it is first negative. Now (6))
holds replacing B”**(s,) by B(s,). Thus, using STP; of »}*', we conclude
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B2 — pi(s,) is zero only at its crossing points. Now the conclusion follows as in
the finite horizon case. O
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