Abstract
Consider the regression model $Y_i = g(t_i) + \varepsilon_i, 1 \leq i \leq n$, with nonrandom design variables $(t_i)$ and measurements $(Y_i)$ for the unknown regression function $g(\cdot)$. We assume that the data are heteroscedastic, i.e., $E(\varepsilon^2_i) = \sigma^2_i \not\equiv \operatorname{const.}$ and investigate how to estimate $\sigma^2_i$. If $\sigma^2_i = \sigma^2(t_i)$ with a smooth function $\sigma^2(\cdot)$, initial estimators $\tilde{\sigma}^2_i$ can be improved by kernel smoothers and the resulting class of estimators is shown to be uniformly consistent. These estimates can be used to improve the estimation of the regression function $g$ itself in parametric and nonparametric models. Further applications are suggested.
Citation
Hans-Georg Muller. Ulrich Stadtmuller. "Estimation of Heteroscedasticity in Regression Analysis." Ann. Statist. 15 (2) 610 - 625, June, 1987. https://doi.org/10.1214/aos/1176350364
Information