Open Access
June, 1987 A Class of Linear Regression Parameter Estimators Constructed by Nonparametric Estimation
J. A. Cristobal Cristobal, P. Faraldo Roca, W. Gonzalez Manteiga
Ann. Statist. 15(2): 603-609 (June, 1987). DOI: 10.1214/aos/1176350363

Abstract

Given a $(p + 1)$-dimensional random vector $(X, Y)$ where $f$ is the unknown density of $X$, the parameters of the multiple linear regression function $\alpha(x) = E(Y/X = x) = x\beta$ may be estimated from a sample $\{(X_1, Y_1), \cdots, (X_n, Y_n)\}$ by minimizing the functional $\hat{\psi}(\beta) = \int(\hat{\alpha}_n(x) - x\beta)^2\hat{f}_n(x) dx$, where $\hat{\alpha}_n$ and $\hat{f}_n$ may be any of a large class of nonparametric estimators of $\alpha$ and $f$. The strong consistency and asymptotic normality of the estimators so obtained are proved in this article under conditions on $(X, Y)$ that are less restrictive than those assumed by Faraldo Roca and Gonzalez Manteiga for $p = 1$. This class of estimators includes ordinary and generalized ridge regression estimators as special cases.

Citation

Download Citation

J. A. Cristobal Cristobal. P. Faraldo Roca. W. Gonzalez Manteiga. "A Class of Linear Regression Parameter Estimators Constructed by Nonparametric Estimation." Ann. Statist. 15 (2) 603 - 609, June, 1987. https://doi.org/10.1214/aos/1176350363

Information

Published: June, 1987
First available in Project Euclid: 12 April 2007

zbMATH: 0631.62041
MathSciNet: MR888428
Digital Object Identifier: 10.1214/aos/1176350363

Subjects:
Primary: 62J05
Secondary: 62G05

Keywords: Linear regression , nonparametric estimation , Ridge regression

Rights: Copyright © 1987 Institute of Mathematical Statistics

Vol.15 • No. 2 • June, 1987
Back to Top