Open Access
September, 1986 Bayesian Statistical Inference for Sampling a Finite Population
Albert Y. Lo
Ann. Statist. 14(3): 1226-1233 (September, 1986). DOI: 10.1214/aos/1176350061

Abstract

Bayesian statistical inference for sampling a finite population is studied by using the Dirichlet-multinomial process as prior. It is shown that if the finite population variables have a Dirichlet-multinomial prior, then the posterior distribution of the inobserved variables given a sample is also Dirichlet-multinomial. If the population size tends to infinity (the sample size is fixed), sampling without replacement from a Dirichlet multinomial process is equivalent to the iid sampling from a Dirichlet process. If both the population size and sample size tend to infinity, then given a sample, the posterior distribution of the population empirical distribution function converges in distribution to a Brownian bridge. The large-sample Bayes confidence band interval are given and shown to be equivalent to the usual ones obtained from simple random sampling.

Citation

Download Citation

Albert Y. Lo. "Bayesian Statistical Inference for Sampling a Finite Population." Ann. Statist. 14 (3) 1226 - 1233, September, 1986. https://doi.org/10.1214/aos/1176350061

Information

Published: September, 1986
First available in Project Euclid: 12 April 2007

zbMATH: 0608.62036
MathSciNet: MR856817
Digital Object Identifier: 10.1214/aos/1176350061

Subjects:
Primary: 62G30
Secondary: 62G05

Keywords: Brownian bridge , Dirichlet-multinomial process , finite population , limiting posterior distribution , prior and posterior distributions

Rights: Copyright © 1986 Institute of Mathematical Statistics

Vol.14 • No. 3 • September, 1986
Back to Top