Open Access
July, 1973 On Some Properties of Hammersley's Estimator of an Integer Mean
Rasul A. Khan
Ann. Statist. 1(4): 756-762 (July, 1973). DOI: 10.1214/aos/1176342471

Abstract

Let $X_1, \cdots, X_n$ be i.i.d. $N(i, 1), i = 0, \pm 1, \pm 2,\cdots$. Hammersley [2] proposed $\lbrack\bar{X}_n\rbrack$, the nearest integer to the sample mean, as an estimator of $i$. It is proved that $d$ is minimax and admissible relative to zero-one loss. However, it is shown that relative to squared error loss, the estimator is neither admissible nor minimax.

Citation

Download Citation

Rasul A. Khan. "On Some Properties of Hammersley's Estimator of an Integer Mean." Ann. Statist. 1 (4) 756 - 762, July, 1973. https://doi.org/10.1214/aos/1176342471

Information

Published: July, 1973
First available in Project Euclid: 12 April 2007

zbMATH: 0263.62003
MathSciNet: MR334350
Digital Object Identifier: 10.1214/aos/1176342471

Subjects:
Primary: 62C15
Secondary: 62F10

Keywords: admissible , Bayes estimator , Bayes risk , discrete normal prior , loss function , minimax

Rights: Copyright © 1973 Institute of Mathematical Statistics

Vol.1 • No. 4 • July, 1973
Back to Top