Translator Disclaimer
September 2020 Solution of the Kolmogorov equation for TASEP
Mihai Nica, Jeremy Quastel, Daniel Remenik
Ann. Probab. 48(5): 2344-2358 (September 2020). DOI: 10.1214/20-AOP1425

Abstract

We provide a direct and elementary proof that the formula obtained in (Matetski, Quastel and Remenik (2016)) for the TASEP transition probabilities for general (one-sided) initial data solves the Kolmogorov backward equation. The same method yields the solution for the related PushASEP particle system.

Citation

Download Citation

Mihai Nica. Jeremy Quastel. Daniel Remenik. "Solution of the Kolmogorov equation for TASEP." Ann. Probab. 48 (5) 2344 - 2358, September 2020. https://doi.org/10.1214/20-AOP1425

Information

Received: 1 June 2019; Revised: 1 January 2020; Published: September 2020
First available in Project Euclid: 23 September 2020

MathSciNet: MR4152645
Digital Object Identifier: 10.1214/20-AOP1425

Subjects:
Primary: 60K35 , 82B23 , 82C22

Keywords: KPZ fixed point , KPZ universality class , PushASEP , TASEP

Rights: Copyright © 2020 Institute of Mathematical Statistics

JOURNAL ARTICLE
15 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.48 • No. 5 • September 2020
Back to Top