
The Annals of Probability
2020, Vol. 48, No. 5, 2344–2358
https://doi.org/10.1214/20-AOP1425
© Institute of Mathematical Statistics, 2020

SOLUTION OF THE KOLMOGOROV EQUATION FOR TASEP

BY MIHAI NICA1,*, JEREMY QUASTEL1,† AND DANIEL REMENIK2

1Department of Mathematics, University of Toronto, *mnica@math.toronto.edu; †quastel@math.toronto.edu
2Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI-CNRS 2807),

Universidad de Chile, dremenik@dim.uchile.cl

We provide a direct and elementary proof that the formula obtained in
(Matetski, Quastel and Remenik (2016)) for the TASEP transition proba-
bilities for general (one-sided) initial data solves the Kolmogorov backward
equation. The same method yields the solution for the related PushASEP par-
ticle system.

1. Introduction. The totally asymmetric simple exclusion process (TASEP) consists of
particles on the lattice Z performing totally asymmetric nearest neighbour random walks with
exclusion: Each particle independently attempts jumps to the neighbouring site to the right at
rate 1, the jump being allowed only if that site is unoccupied. We will always consider initial
conditions in which there is a rightmost particle; this always remains so, and the positions
of the particles can be denoted Xt(1) > Xt(2) > · · · . The dynamics of the first N particles
Xt(1) > Xt(2) > · · · > Xt(N) is independent of the rest, so the infinite system clearly makes
sense. If we let

(1.1) X−1
t (u) = min

{
k ∈ Z : Xt(k) ≤ u

}
denote the label of the rightmost particle which sits to the left of, or at, u at time t , then the
TASEP height function associated to Xt can be defined, for z ∈ Z, by

ht (z) = −2
(
X−1

t (z − 1) − X−1
0 (−1)

) − z,

which fixes h0(0) = 0. The height function itself is a simple random walk path ht (z + 1) =
ht (z) + η̂t (z) with η̂t (z) = 1 if there is a particle at z at time t and −1 if there is no particle
at z at time t . The dynamics of the height function is that local max’s become local min’s at
rate 1; that is, if ht (z) = ht (z ± 1) + 1, then ht (z) �→ ht (z) − 2 at rate 1, the rest of the height
function remaining unchanged. The rate of decrease is

(1.2) −21∧ = 1

2

[(∇−h
)(∇+h

) − 1 + �h
]
,

where 1∧ is the indicator function of a local max. Hence, the TASEP height function can be
seen as a simple discretization of the Kardar–Parisi–Zhang (KPZ) equation,

(1.3) ∂th = 1

2
(∂xh)2 + 1

2
∂2
xh + ξ.

Because of its amenability to computations, TASEP has become the most popular model in
the KPZ universality class.

N -particle TASEP was solved by Schütz [21] using the coordinate Bethe ansatz. The tran-
sition probabilities are given by a determinant,

(1.4) P
(
Xt(1) = x1, . . . ,Xt (N) = xN

) = det
(
Gi−j

(
t, xN+1−i − X0(N + 1 − j)

))N
i,j=1
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with

(1.5) Gn(t, x) = (−1)n

2π i

∮
�0,1

dw
(1 − w)−n

wx−n+1 et(w−1),

where �0,1 is any positively oriented simple loop which includes w = 0 and w = 1. A direct
proof of this formula is not difficult and can be obtained in a couple of pages (see, e.g., [19]).

On the other hand, one is generally less interested at a later time in the exact positions
of the particles or the exact height function, but rather in the joint distribution of the height
function at a finite number of points x1, . . . , xm, where m is fixed, and N is large or infinite.
Or what amounts to the same thing, one would like to compute, for some sequence n of m

indices n1 < . . . < nm and any vector a = (a1, . . . , am) ∈ Z
m, the joint probability

(1.6) Ft(X0;a,n) = PX0

(
Xt(nj ) > aj , j = 1, . . . ,m

)
,

where the subscript in PX0 denotes the initial condition. In Schütz’s formula, this would
involve a sum over the positions of the other N − m particles. The resulting formula is not
useful and, in particular, not conducive to the N → ∞ limit.

This was overcome by [5, 20], who were able to rewrite the right-hand side of (1.4) as
a (signed) determinantal point process on a space of Gelfand–Tsetlin patterns. This allowed
them to employ the Eynard–Mehta technology [8] to conclude that (1.6) can be written as
the Fredholm determinant Ft(X0;a,n) = det(I − χ̄aK

TASEP
t χ̄a) which (in principle) could

be obtained from the operators χ̄a and KTASEP
t acting on 	2({n1, . . . , nm} ×Z) given by

χ̄af (nj , x) = f (nj , x)1x≤aj
(1.7)

and

KTASEP
t (ni, xi;nj , xj ) = −Qnj−ni (xi, xj )1ni<nj

+
nj∑

k=1



ni

ni−k(xi)�
nj

nj−k(xj ),(1.8)

where Q(x,y) = 1
2x−y 1x>y and, for k ≤ n − 1,

(1.9) 
n
k (x) = 1

2π i

∮
�0

dw
(1 − w)k

2x−X0(n−k)wx+k+1−X0(n−k)
et (w−1),

where �0 is any positively oriented simple loop, including the pole at w = 0 but not the one at
w = 1. The functions �n

k(x), k = 0, . . . , n−1 are defined implicitly by: I. The biorthogonality
relation

∑
x∈Z 
n

k (x)�n
	(x) = 1k=	; II. 2−x�n

k(x) is a polynomial of degree at most n − 1 in
x for each k.

Except for a few very special choices of initial data, the solution for the �n
k(x) was not dis-

covered until [14]. Without discussing their exact form, we state the final result after perform-
ing some manipulations to get a nice formula. Let Q̄(n)(x, y) = 2x−y 1

(n−1)!
∏n−1

j=0(x − y − j)

be the real analytic extension of Qn, let ∇−f (x) = f (x) − f (x − 1) be the backward
discrete difference operator, and observe that Q is invertible (with inverse Q−1(x, y) =
2 · 1x=y−1 − 1x=y). Define

S−t,−n(z1, z2) = (
e− t

2 ∇−
Q−n)∗

(z1, z2) = 1

2π i

∮
�0

dw
(1 − w)n

2z2−z1wn+1+z2−z1
et(w−1/2),(1.10)

S̄−t,n(z1, z2) = Q̄(n)e
t
2 ∇−

(z1, z2) = 1

2π i

∮
�0

dw
(1 − w)z2−z1+n−1

2z1−z2wn
et(w−1/2),(1.11)

the first one being defined for all n ∈ N and the second one for n ≥ 1. Here, (e− t
2 ∇−

)t≥0 is
the semigroup of a Poisson process with jumps to the left at rate 1

2 , which we may think of as
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an integral operator on 	2(Z) with kernel e− t
2 ∇−

(x, y) = e− t
2 tx−y

2x−y(x−y)!1x≥y . This formula

is actually valid for all t ∈ R, and it defines the whole group of operators (e− t
2 ∇−

)t∈R (in
particular e− t

2 ∇−
is invertible, with inverse e

t
2 ∇−

). Define, also, for n ≥ 0,

(1.12) S̄epi(X0)−t,n (z1, z2) = EB0=z1

[
S̄−t,n−τ (Bτ , z2)1τ<n

]
,

where τ is defined to be the hitting time of the strict epigraph of the “curve”
(X0(k + 1))k=0,...,n−1 by a discrete time random walk Bk with transition probabilities Q.
Then, as proven in [14], the kernel from (1.8) can be expressed as

(1.13) KTASEP
t (ni, ·;nj , ·) = −Qnj−ni 1ni<nj

+ (S−t,−ni
)∗S̄epi(X0)−t,nj

.

Now, let L denote the generator of TASEP. It acts on bounded cylinder (i.e., depending on
finitely many coordinates) functions f : W −→ R, where W = {X ∈ Z

N : X(1) > X(2) >

· · · }, as follows:

(1.14)
Lf (X) = ∑

k≥1

1X(k−1)−X(k)>1
[
f

(
X(1), . . . ,X(k) + 1, . . .

)
−f

(
X(1), . . . ,X(k), . . .

)]
,

where we take the convention X(0) = ∞ in the indicator 1X(0)−X(1)>1. Since f is a cylin-
der function, the sum has only finitely many nonzero terms. If Xt is a Markov process
with generator L, its transition probabilities p(s,X;T ,A) = P(XT ∈ A | Xs = X) satisfy
the Kolmogorov backward equation, ∂sp(s,X;T ,A) = −Lp(s,X;T ,A) with final condi-
tion lims↑T p(s,X;T ,A) = 1X∈A. The generator L acts on the X variable. In our case, we
have a time homogeneous process p(s,X;T ,A) = p̃(T − s,X;A) and a generating fam-
ily of sets A = {X(nj ) > aj , j = 1, . . . ,m} and Ft(X;a,n) = p̃(t,X;A); so, the backward
equation for F reads

d

dt
F = LF(1.15)

with initial condition

F0(X;a,n) = 1X(n1)>a1,...,X(nm)>am.(1.16)

The solution of the Kolmogorov backward equation for a continuous time Markov chain
on a countable state space S is unique under the condition that the supremum over all
states of the rate of leaving that state is finite (see, e.g., Theorem 2.26 and Corollary 2.34
of [13], where it is written for the point-to-point probabilities pt(X,Y ) = PX(X(t) = Y);
S being countable, the probability measure pt(X,A) = PX(X(t) ∈ A) = ∑

Y∈A pt(X,Y )

is, therefore, prescribed and satisfies uniquely the backward equation in t,X, with ini-
tial condition p0(X,A) = 1X∈A). Our state space W is not countable; however, in TASEP
(and PushASEP), the evolution of particles X(1), . . . ,X(n) is unaffected by particles X(m),
m > n. Hence, the backward equation (1.15), (1.16) actually takes place on the countable set
Wnm = {(X(1),X(2), . . . ,X(nm)) ∈ Z

N : X(1) > X(2) > · · · > X(nm)}. Therefore, we have

THEOREM 1.1. The unique solution of the Kolmogorov backward equation (1.15), (1.16)
for TASEP is given explicitly by the Fredholm determinant of the kernel KTASEP

t introduced
in (1.8):

(1.17) Ft(X0;a,n) = det
(
I − χ̄aK

TASEP
t χ̄a

)
	2({n1,...,nm}×Z).
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However, a detailed proof along the historical lines sketched above would run about 35
pages. A natural and important question is whether one could just prove directly that the
determinant satisfies the Kolmogorov equation. The purpose of this article is to provide such
a proof, for TASEP and its variant PushASEP. We comment that the direct proof is relatively
short, but far from obvious. It is not known if it can be obtained directly from the biorthogonal
representation (1.8) without knowledge of the special form of the �n

k(x). It is also worth
noting that there are examples (such as discrete time TASEP, see [15]) with explicit �n

k(x)

for which the present short proof does not work.
TASEP has a rich history, some of which can be found in the introduction of [21]. Since

that paper there has been significant progress in exact solvability, with much interest stem-
ming from TASEP’s role as one of the fundamental models in the KPZ universality class.
There are many results; we mention here only a few besides the ones which fit directly into
our story above. The one-point distribution of TASEP with step initial data (X0(i) = −i,
i ≥ 1) was first solved in [11] by exploiting a Toeplitz structure which is only available for
that choice of initial condition; the main goal of that paper was to prove the now-classic fact
that the fluctuations of the position of an appropriately chosen particle converge, as time goes
to infinity, to the Tracy–Widom GUE distribution [22]. This was later extended in [12] to the
multipoint distributions of TASEP which were shown there to converge to the Airy2 process
[16]. Much work was devoted during the last 15 years to extending this type of results to
two other choices of initial data: periodic (X0(i) = −2i, i ∈ Z, which was the subject of the
papers [5, 20] discussed above) and stationary (X0 corresponding to placing particles on Z

according to a product measure) [1, 6, 9]. In the past 10 years there has been a huge effort to
extend some of these results to the partially asymmetric simple exclusion process (see, e.g.,
[3, 10, 23]). These still depend on very particular initial data. In the case of TASEP on a ring
there is also a huge literature with some recent breakthroughs: [2], where asymptotics is done
for a type of step initial data and [17, 18], which actually computes the entire spectrum.

2. Kolmogorov equation for TASEP. In this section we provide a short selfcontained
proof of Theorem 1.1. The strategy is to compute the two sides of (1.15) with Ft given by
(1.17) and KTASEP

t given by (1.13) and to check that they are equal.
We begin with the right-hand side of (1.15). We will first consider the effect of moving a

single particle, and then we will sum over all particles to obtain the effect of the generator L.
Fix a particle label k, and consider the original initial condition X0 and the initial condition
X̃0 where particle k is moved to the right by one, that is, X̃0(k) := X0(k) + 1 (for now it
does not even matter whether or not this particle can actually be moved without violating
the strict particle order condition). We will compare the kernel KTASEP

t with these two initial
conditions; for notational convenience we put tildes on top of all objects when they depend
on the modified initial condition (e.g., K̃TASEP

t refers to the kernel started from the initial
condition X̃0). By (1.13) we have

(2.1)
(
K̃TASEP

t − KTASEP
t

)
(ni, ·;nj , ·) = (S−t,−ni

)∗
(
S̄epi(X̃0)−t,nj

− S̄epi(X0)−t,nj

)
,

while by (1.12) we have

(2.2)

(
S̄epi(X̃0)−t,n − S̄epi(X0)−t,n

)
(z1, z2)

= EB0=z1

[
S̄−t,n−τ̃ (Bτ̃ , z2)1τ̃<n − S̄−t,n−τ (Bτ , z2)1τ<n

]
.

Recall that τ means the hitting time of the strict epigraph of (X0(	 + 1))	≥0; τ̃ is the same
but with the modified X̃0. It is clear from the definitions that τ̃ = τ unless τ = k − 1 < n

and Bk−1 = X0(k)+ 1 (see Figure 1 for a visual explanation), and thus the above expectation
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FIG. 1. A sample path of the random walk B	 (circles) and the graph of the initial conditions {X0(i + 1)}n−1
i=0

and {X̃0(i + 1)}n−1
i=0 which differ only at position k with X̃0(k) = X0(k) + 1. The random walk has i.i.d. ge-

ometric decrements, and τ and τ̃ are the first times the random walk B	 hits the strict epigraph of the initial
condition curve with X0 and X̃0, respectively. Note that τ̃ = τ unless the hit happens exactly at τ = k − 1 < n

and Bk−1 = X̃0(k) = X0(k) + 1. In this example, k = 4, τ = 3 and τ̃ > 4.

equals

(2.3)
EB0=z1

[(
S̄−t,n−τ̃ (Bτ̃ , z2)1τ̃<n − S̄−t,n−τ (Bτ , z2)1τ<n

)
× 1τ=k−1,Bk−1=X0(k)+1

]
1k≤n,

which by the Markov property we may write as fk(z1)g
(n)
k (z2) with

fk(z) = PB0=z

(
τ = k − 1,Bk−1 = X0(k) + 1

)
(2.4)

and

g
(n)
k (z) = (

EBk−1=X0(k)+1
[
S̄−t,n−τ̃ (k)(Bτ̃ (k) , z)1τ̃ (k)<n

]
− S̄−t,n−k+1

(
X0(k) + 1, z

))
1k≤n,

(2.5)

where the subscript in expectation on the right-hand side indicates that the random walk is
started now at X0(k) + 1, at time k − 1 and the superscript in τ̃ (k) indicates that the hitting
time is now restricted to times in {k, k + 1, . . . } (we will use the same notation for other
hitting times below). This means that

(2.6) �
(k)
i,j := (

K̃TASEP
t − KTASEP

t

)
(ni, ·;nj , ·) = (S−t,−ni

)∗fk ⊗ g
(nj )

t,k .

Crucially, this is a rank one kernel (acting on 	2(Z)), and then the same is true of the extended
kernel K̃TASEP

t −KTASEP
t when thought of as acting on the extended space 	2({n1, . . . , nm}×

Z), so using the fact that det(I + A + B) − det(I + A) = det(I + A) tr[(I + A)−1B] for B

any rank one operator, we deduce that

(2.7)
det

(
I − χ̄aK̃

TASEP
t χ̄a

) − det
(
I − χ̄aK

TASEP
t χ̄a

)
= −det

(
I − χ̄aK

TASEP
t χ̄a

)
tr

[(
I − χ̄aK

TASEP
t χ̄a

)−1
χ̄a�

(k)χ̄a

]
(here, �(k) = K̃TASEP

t − KTASEP
t as in (2.6)). This difference corresponds to the bracket in

the k-th term of the sum (1.14) defining the action of L on our function Ft(X0;a,n). The
conclusion then is that if J ⊆ N is the set of labels of particles which can be moved (i.e.,
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those so that X0(k − 1) − X0(k) > 1), then LFt(X0;a,n) equals the sum over k ∈ J of the
above difference, that is,

(2.8)

LFt(X0;a,n)

= −det
(
I − χ̄aK

TASEP
t χ̄a

)
tr

[(
I − χ̄aK

TASEP
t χ̄a

)−1
χ̄a

(∑
k∈J

�(k)

)
χ̄a

]
.

Note that, as above, the sum only has finitely many nonzero terms, because �(k) = 0 for
all k > nm (as is clear, for instance, from (2.5) and (2.6)). Finally, we note if k /∈ J (i.e., if
X0(k) + 1 = X0(k − 1)), then, since the random walk B· has increments Bt−1 − Bt ≥ 1, we
have {Bk−1 = X0(k)+1} ⊆ {Bk−2 ≥ X0(k −1)+1} ⊆ {τ ≤ k −2} and thus fk(z) = 0. Thus,
summing over j /∈ J has no effect, and we have then

(2.9)

LFt(X0;a,n)

= −det
(
I − χ̄aK

TASEP
t χ̄a

)
tr

[(
I − χ̄aK

TASEP
t χ̄a

)−1
χ̄a

(∑
k≥1

�(k)

)
χ̄a

]
.

Now, we turn to the left-hand side of (1.15). In general, if a kernel Kh depends smoothly on
a parameter h, then one has the formula d

dh
det(I −Kh) = −det(I −Kh) tr[(I −Kh)

−1 d
dh

Kh].
Thus,

(2.10)

d

dt
Ft (X0;a,n)

= −det
(
I − χ̄aK

TASEP
t χ̄a

)
tr

[(
I − χ̄aK

TASEP
t χ̄a

)−1
χ̄a

(
d

dt
KTASEP

t

)
χ̄a

]
,

and then in view of (2.9) all we need in order to deduce (1.15) is to check that

(2.11)
d

dt
KTASEP

t = ∑
k≥1

�(k).

We have from (1.13) that

i,j := d

dt
KTASEP

t (ni, ·;nj , ·) =
(

d

dt
(S−t,−ni

)∗
)
S̄epi(X0)−t,nj

+ (S−t,−ni
)∗

(
d

dt
S̄epi(X0)−t,n

)
.

From (1.10) we get

d

dt
(S−t,−n)

∗ = −1

2
∇−(S−t,−n)

∗ = −1

2
(S−t,−n)

∗∇−,(2.12)

and from (1.11) we get d
dt
S̄−t,n = 1

2 S̄−t,n∇− = 1
2∇−S̄−t,n, which means

d

dt
S̄epi(X0)−t,n (z1, z2) = EB0=z1

[
1

2
∇−S̄−t,n−τ (Bτ , z2)1τ<n

]
(2.13)

(we have used here that ∇− commutes with (S−t,−n)
∗ and S̄−t,n since they all have Toeplitz

kernels). This gives

i,j = 1

2
(S−t,−ni

)∗Hnj

with

(2.14)
Hn(z1, z2) = −∇−S̄epi(X0)−t,n (z1, z2) +EB0=z1

[∇−S̄−t,n−τ (Bτ , z2)1τ<n

]
= S̄epi(X0)−t,n (z1 − 1, z2) −EB0=z1

[
S̄−t,n−τ (Bτ − 1, z2)1τ<n

]
.
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Shifting the curve defined by X0 up by one, the first term on the second line can be ex-
pressed as EB0=z1[S̄−t,n−τ̂ (Bτ̂ − 1, z2)1τ̂<n] with τ̂ the hitting time of the strict epigraph of
(X0(m + 1) + 1)m≥0, and thus

Hn(z1, z2) = EB0=z1

[
S̄−t,n−τ̂ (Bτ̂ − 1, z2)1τ̂<n − S̄−t,n−τ (Bτ − 1, z2)1τ<n

]
.

Note that τ̂ ≥ τ , so the difference inside the brackets vanishes for τ ≥ n. If τ < n and Bτ ≥
X0(τ + 1) + 2, we have τ̂ = τ , so the difference vanishes again. We deduce that

Hn(z1, z2) =
n−1∑
k=0

PB0=z1

(
τ = k,Bk = X0(k + 1) + 1

)
× [

EBk=X0(k+1)+1
[
S̄−t,n−τ̂ (k) (Bτ̂ (k) − 1, z2)1τ̂ (k)<n

]
− S̄−t,n−k

(
X0(k + 1), z2

)]
=

n−1∑
k=0

fk+1(z1)ĝ
(n)
k+1(z2)

(2.15)

with fk as in (2.4) and ĝ
(n)
k+1(z) given by the bracket in the middle line (see also the comment

after (2.5)).
Shifting now the curve defining τ̂ back to X0 in the last expectation, we get

(2.16) ĝ
(n)
k (z) = EBk−1=X0(k)

[
S̄−t,n−τ (Bτ , z)1τ<n

] − S̄−t,n−k+1
(
X0(k), z

)
.

We have then

(2.17)
d

dt
KTASEP

t (ni, ·;nj , ·) = 1

2

nj∑
k=1

(S−t,−ni
)∗fk(z1) ⊗ ĝ

(nj )

k (z2).

Comparing this formula and (2.6), and since g
(n)
k ≡ 0 for k ≥ n by its definition (2.5), all that

remains in order to prove (2.11) is to check that

(2.18) ĝ
(n)
k = 2g

(n)
k for all k ≤ n.

But from (1.11) we have S̄−t,ne
− t

2 ∇− = S̄0,n = Q̄(n), so applying e− t
2 ∇−

on the right in (2.18)
and using the definitions (2.5) and (2.16) of g

(n)
k and ĝ

(n)
k we see that (2.18) is equivalent to

(2.19)
EBk−1=X0(k)

[
Q̄(n−τ (k))(Bτ(k) , z)1τ (k)<n

] − Q̄(n−k+1)(X0(k), z
)

= 2EBk−1=X0(k)+1
[
Q̄(n−τ̃ (k))(Bτ̃ (k) , z)1τ̃ (k)<n

] − 2Q̄(n−k+1)(X0(k) + 1, z
)

for k ≤ n. By definition of Q̄(n), if we multiply the equation by 2−z, then both sides are
polynomials in z; so it is enough to prove the equality for z < X0(n). But it is easy to check
that

(2.20) Q̄(n)(x, y) = Qn(x, y) for all x − y ≥ 1

(see [14], equation (2.23)), so for such z, since X0(i) is decreasing in i, then z is also smaller
than Bτ , Bτ̃ and X0(k) in (2.19), and we deduce that all the Q̄(	)’s in the identity can be
replaced by Q	. As a consequence, what we need to prove is that

(2.21)
EBk−1=X0(k)

[
Qn−τ (k)

(Bτ(k) , z)1τ (k)<n

] − Qn−k+1(
X0(k), z

)
= 2EBk−1=X0(k)+1

[
Qn−τ̃ (k)

(Bτ̃ (k) , z)1τ̃ (k)<n

] − 2Qn−k+1(
X0(k) + 1, z

)
,
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or simply

PBk−1=X0(k)

(
Bn = z, τ (k) ≥ n

) = 2PBk−1=X0(k)+1
(
Bn = z, τ̃ (k) ≥ n

)
,

which is easy to see since the walk takes Geom[1
2 ] steps to the left: in fact, since X0(k + 1) <

X0(k) and τ (k) and τ̃ (k) may only differ on the event that the walk hits at time k − 1, then for
k < n, decomposing according to the first step,

(2.22)

PBk−1=X0(k)+1
(
Bn = z, τ̃ (k) ≥ n

)
= ∑

y≤X0(k+1)

Q
(
X0(k) + 1, y

)
PBk=y

(
Bn = z, τ̃ (k) ≥ n

)
= ∑

y≤X0(k+1)

1

2
Q

(
X0(k), y

)
PBk=y

(
Bn = z, τ (k) ≥ n

)
= 1

2
PBk−1=X0(k)

(
Bn = z, τ (k) ≥ n

);
the case k = n is even simpler. This yields the desired equality (2.18).

3. Initial condition. Now, we check that the initial condition (1.16) is satisfied. It is
simpler to deal first with the one-point case (m = 1), so we start there.

3.1. One-point case. Let

K
(n)
t = KTASEP

t (n, ·;n, ·).
We need to prove that

(3.1) det
(
I − χ̄aK

(n)
0 χ̄a

)
	2(Z) = 1X0(n)>a.

REMARK 3.1. In the one point case, the initial condition (3.1) can be checked rather
easily from the biorthogonal ensemble representation (1.8), as mentioned by one of the refer-
ees; the proof using this biorthogonalization is given below. However, since our goal in this
paper is to prove (1.17) directly from the representation (1.13) (and thus avoid having to use
the result of [14] to connect this formula back to (1.8)), we provide the direct (but relatively
more complicated) proof from (1.13) in this subsection.

From (2.6) we have K
(n)
0 (z1, z2) = ∑n−1

k=0 
n
k (z1)�

n
k(z2) with t = 0 in the definition (1.9).

Let 
,� : Z× {0, . . . , n − 1} −→R be given by 
(z, k) = 
n
k (z) and �(z, k) = �n

k , so that
the left hand side of (3.1) equals

det
(
I − χ̄a
�∗χ̄a

)
	2(Z) = det

(
I − �∗χ̄a


)
,

where we have used the cyclic property of the Fredholm determinant. Note that on the deter-
minant on the right-hand side is finite dimensional, with the n × n matrix inside being given
by

�∗χ̄a
(	, k) = ∑
z≤a


n
k (z)�n

	(z), 	, k = 0, . . . , n − 1.

Assume first that a < X0(n). Then, a < X0(n − k) − k for all k = 0, . . . , n, which im-
plies from (1.9) that 
n

k (z) = 0 for all z ≤ a and all such k, so det(I − �∗χ̄a
) =
det(I ) = 1 as desired. Assume otherwise that a ≥ X0(n). From (1.9) it is straightfor-
ward to check that 
n

0 (z) = 1z=X0(n), and thus the first column of �∗χ̄a
 is given
by �∗χ̄a
(	,0) = ∑

z≤a 
n
k (z)�n

	(z) = �n
	(X0(n)). But the biorthogonalization condition∑

z∈Z 
n
0 (z)�n

	(z) = 1	=0 implies that �n
	(X0(n)) = 1	=0. We deduce that the first column

of I − �∗χ̄a
 equals zero; so det(I − �∗χ̄a
) vanishes as desired.
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We turn now to the proof of (3.1) directly from (1.13). Consider first the case a ≤
X0(n) − 1, which implies that in (3.1) we need to evaluate K

(n)
0 (z1, z2) only for z1 ≤

X0(n) − 1. By definition of the hitting time τ in (1.12), we have S̄epi(X0)
0,n (z1, z2) =

Q̄(n)(z1, z2) for z1 > X0(1); so we may write

(3.2) K
(n)
0 = Q−nχX0(1)Q̄

(n) + Q−nχ̄X0(1)S̄epi(X0)
0,n .

Now,

(3.3) Q−n(x, y) = (−1)y−x+n2y−x

(
n

y − x

)
10≤y−x≤n;

so, in particular, Q−n(x, y) = 0 for y − x > n. If y > X0(1) and z1 ≤ X0(n) − 1, we
have y − z1 > X0(1) − X0(n) + 1 ≥ n, so Q−n(z1, y) = 0, and the first term on the
right-hand side of (3.2) vanishes. For the second term we consider S̄epi(X0)

0,n (y, z2) =∑n−1
k=0 EB0=y[S̄0,n−k(Bk, z2)1τ=k] with y ≤ X0(1) and note that τ = k implies Bk >

X0(k + 1), which cannot happen unless the starting location satisfies y > X0(k + 1) + k (be-
cause the walk takes downward steps of size at least 1). But for such y (and z1 ≤ X0(n) − 1)
we have y − z1 > X0(k + 1) + k − X0(n) + 1 ≥ n, and thus again we get Q−n(z1, y) = 0.
We have proved that

(3.4) χ̄aK
(n)
0 = 0 when a < X0(n),

and then the left-hand side of (3.1) equals det(I ) = 1 for a < X0(n), as desired.
Next, we turn to the case a ≥ X0(n) and focus on the column corresponding to the index

X0(n) in χ̄aK
(n)
0 χ̄a , that is, (K

(n)
0 (z,X0(n)))z≤a . We claim that, in this case,

(3.5) K
(n)
0

(
z,X0(n)

) = 1z=X0(n) for all z ∈ Z.

If that is the case, then the matrix I − χ̄aK
(n)
0 χ̄a has a column which is identically 0, and thus

its determinant vanishes, as required.
In order to prove (3.5), observe first that the argument we used to prove (3.4) actually

shows that K
(n)
0 (z,X0(n)) = 0 for all z < X0(n). Consider next the case z = X0(n). For

the first term in (3.2), a simple residue computation using the contour integral formulas for
Q−n and Q̄(n) which follow from (1.10) and (1.11) with t = 0 gives (remembering X0(n) −
X0(1) ≤ 1 − n)

(3.6)

Q−nχX0(1)Q̄
(n)(X0(n),X0(n)

)
= 1

(2π i)2

∮
dw

∮
dv

(1 − w)n(1 − v)X0(n)−X0(1)+n−1

wX0(n)−X0(1)+nvn

1

1 − v − w

= 1X0(n)−X0(1)=1−n.

Since we want to show that K
(n)
0 (X0(n),X0(n)) = 1, then from (3.6) together with (3.2) we

see that we need to show that

(3.7) Q−nχ̄X0(1)S̄epi(X0)
0,n

(
X0(n),X0(n)

) = 1X0(n)−X0(1)<1−n.

We consider the two possibilities for X0(n) − X0(1) separately. Assume first that X0(1) −
X0(n) = n − 1. This means that the first n particles are packed one next to the other, that is,
X0(k) = X0(1)−k +1, and thus since the walk starts below X0(1) and takes downward steps
of size at least 1, it cannot hit the strict epigraph of the curve by time n, so χ̄X0(1)S̄epi(X0)

0,n = 0,

as desired. The other possibility is that X0(1) − X0(n) > n − 1. Using S̄0,n = Q̄(n), we may



SOLUTION OF THE KOLMOGOROV EQUATION FOR TASEP 2353

express the kernel S̄epi(X0)
0,n (y,X0(n)) as

∑n−1
k=0 EB0=y[Q̄(n−k)(Bk,X0(n))1τ=k] and then note

that, since inside the expectation Bk is the location where the strict epigraph is hit, Bk −
X0(n) ≥ X0(k + 1)+ 1 −X0(n) ≥ n− k ≥ 1; so, by (2.20), we may replace Q̄(n−k) by Qn−k

there to get
∑n−1

k=0 PB0=y(Bn = X0(n), τ = k). But Bn = X0(n) implies Bn−1 ≥ X0(n) + 1,
which in turn implies τ ≤ n − 1, so the last sum equals simply Qn(y,X0(n)), and then

Q−nχ̄X0(1)S̄epi(X0)
0,n

(
X0(n),X0(n)

) = ∑
y≤X0(1)

Q−n(
X0(n), y

)
Qn(

y,X0(n)
)
.

And the last sum can be extended to all y’s because, if y > X0(1), then, under our assumption,
X0(n) − X0(1) < 1 − n and using (3.3), the first factor in the summand vanishes. This shows
that Q−nχ̄X0(1)S̄epi(X0)

0,n (X0(n),X0(n)) = 1 in this case, as desired.
Up to here, we have proved (3.5) for z ≤ X0(n). Consider finally the case z > X0(n). The

exact same argument used in the last paragraph to prove (3.7) also shows

Q−nχ̄X0(1)S̄epi(X0)
0,n

(
z,X0(n)

) = Q−nχX0(1)Q̄
(n)(z,X0(n)

)
1X0(1)−X0(n)>n−1.

In particular, in the case X0(1) − X0(n) > n − 1 we get, using (3.2), that K
(n)
0 (z,X0(n)) =

Q−nQ̄(n)(z,X0(n)) which equals 0 because, in fact, Q−nQ̄(n) ≡ 0 (see [14], equation (2.24)).
It remains to prove that the first term in (3.2) vanishes when X0(1) − X0(n) = n − 1, but this
is straightforward, because in this case we have (using the contour integral formulas (1.10)
and (1.11) as before)

(3.8)
Q−nχX0(1)S̄0,n

(
z,X0(n)

) = 1

(2π i)2

∮
dw

∮
dv

(1 − w)n

wz−X0(1)+nvn

1

1 − v − w

= 1

2π i

∮
dw

1

wz−X0(1)+n
= 0

since z − X0(1) + n > X0(n) − X0(1) + n = 1.

3.2. Multipoint case. We let Li,j = KTASEP
0 (ni, ·;nj , ·) and think of KTASEP

t as an
operator-valued matrix L with entries Li,j . The initial condition (1.16) will follow from the
arguments in the one-point case and the identity

(3.9) Li,j = −Qnj−ni 1ni<nj
+ Qnj−niK

(ni)
t ,

which is (D.8) in [14]. Consider first the case ai ≤ X0(ni) − 1 for each i. Here, (3.4) gives
χ̄ai

K(ni) = 0, and then in the sum χ̄ai
Qnj−niK

(ni)
t (z1, z2) = 1z1≤ai

∑
y∈Z Qnj−ni (z1, y)×

K
(ni)
0 (y, z2) only terms with y > ai survive. On the other hand, we have Qm(z, y) = 0 for

z < y (any m ∈ Z) so Qnj−ni (z1, y) = 0 for z1 ≤ ai < y. This shows that χ̄ai
Li,j χ̄aj

=
−Qnj−ni 1ni<nj

, and since this holds for all i, we get F0(X0;a,n) = det(I − χ̄aLχ̄a) with L

a strictly upper triangular operator-valued matrix, which yields F0(X0;a,n) = 1, as desired.
Suppose next that aj ≥ X0(nj ) for some j ; so, we need to prove det(I − χ̄aLχ̄a) = 0.

We may assume without loss of generality that nj is the largest particle label among
{n1, . . . , nm} for which this inequality holds. We will focus on the j th column of χ̄aLχ̄a

and, more precisely, on the subcolumn of this column of kernels corresponding to the index
X0(nj ), that is, v(j) := (v

(j)
	 (z))z∈Z,i=1,...,m with v

(j)
	 (z) = χ̄ai

Li,j (z,X0(nj )). In this case

(3.5) gives us K
(nj )

0 (z,X0(nj )) = 1z=X0(nj ) for all z, and then Qnj−niK
(nj )

0 (z,X0(nj )) =
Qnj−ni (z,X0(nj )), so that using (3.9) we get

v
(j)
i (z) = Qnj−ni

(
z,X0(nj )

)
1ni≥nj

1z≤ai
.
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The case i = j is direct and yields v
(j)
j (z) = 1z=X0(nj ). Otherwise, if ni > nj , then, nec-

essarily, ai < X0(ni) by our choice of j , and, hence for z ≤ ai , we have X0(nj ) − z >

X0(nj ) − X0(ni) ≥ ni − nj − 1 so, as before, v
(j)
i (z) = 0. The conclusion is that v

(j)
i (z) =

1i=j 1z=X0(nj ). But then I − χ̄aLχ̄a has a column (namely, v(j)) which is identically 0, and
thus F0(X0;a,n) = det(I − χ̄aLχ̄a) = 0, as required.

4. PushASEP. We consider now PushASEP, a generalization of TASEP and the Toom
model [7] introduced in [4]. Again, we have particles on the lattice Z with positions
Xt(1) > Xt(2) > · · · . Each particle attempts to jump one step to the right at rate r , with
jumps being permitted only if the neighboring site is empty; this is the same TASEP dy-
namics considered above (except run at rate r). On the other hand, each particle has another
(independent) exponential clock running at rate 	, and when it rings, the particle jumps to
the nearest vacant site on its left. Relabeling the particles in order to keep the ordering after
such a jump, we may think of the effect of a particle jumping left as pushing all its left neigh-
bors one step to the left. TASEP and the Toom model (or PushTASEP) are recovered from
PushASEP by setting 	 = 0 and r = 0, respectively.

The generator Lr,	 of this process can be written similarly to the one for TASEP: letting
b(k) denote the length of the block of nearest neighbor occupied sites lying to the left of
(and including) particle k, meaning that X0(k + j) = X0(k) − j for j = 0, . . . , b(k) − 1 and
X0(m + b(k)) < X0(k) − b(k),

(4.1)

Lr,	f (X) = r
∑
k≥1

1X(k−1)−X(k)>1
[
f

(
. . . ,X(k) + 1, . . .

) − f
(
. . . ,X(k), . . .

)]
+ 	

∑
k≥1

[
f

(
. . . ,X(k) − 1, . . . ,X

(
k + b(k)

) − 1, . . .
)

− f
(
. . . ,X(k), . . . ,X

(
k + b(k)

)
, . . .

)]
,

where again we take X(0) = ∞. As for the TASEP case we define

(4.2) Ft(X;a,n) = PX

(
Xt(n1) > a1, . . . ,Xt (nm) > am

);
again, we have that Ft(·;a) satisfies the Kolmogorov backward equation

d

dt
F = Lr,	F,(4.3)

with initial condition

F0(X;a,n) = 1X(1)>a1,...X(n)>an.(4.4)

THEOREM 4.1. The unique solution of (4.3), (4.4) is given by

Ft(X0;a,n) = det
(
I − χ̄aK

PushASEP
t χ̄a

)
	2({n1,...,nm}×Z)

with

(4.5) KPushASEP
t (ni, ·;nj , ·) = −Qnj−ni 1ni<nj

+ (S−t,−ni
)∗S̄epi(X0)−t,nj

,

where the operators S−t,−n and S̄−t,n are now given by

S−t,−n(z1, z2) = (
e− 1

2 rt∇−+2	t∇+
Q−n)∗

(z1, z2)
(4.6)

= 1

2π i

∮
�0

dw
(1 − w)n

2z2−z1wn+1+z2−z1
et[r(w−1/2)+	(1/w−2)],
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S̄−t,n(z1, z2) = Q̄(n)e
1
2 rt∇−−2	t∇+

(z1, z2)
(4.7)

= 1

2π i

∮
�0

dw
(1 − w)z2−z1+n−1

2z1−z2wn
et[r(w−1/2)+	(2−1/(1−w))];

here, ∇+f (x) = f (x + 1) − f (x) and e− 1
2 rt∇−+2	t∇+

is defined similarly to e− t
2 ∇−

after
(1.11).

This result, which is new, can be proved along the same lines as the solution of TASEP
given in [14]; such a proof will appear in [15] (where convergence to the KPZ fixed point will
also be proved). Our goal here, as for the Kolmorogov equation for TASEP in Theorem 1.1,
is to prove directly that the Fredholm determinant provides a solution to the Kolmogorov
backward equation (4.3), (4.4).

Note first that for t = 0 the formulas for S−t,−n and S̄−t,n given in Theorem 4.1 are the
same as those for TASEP; so, the initial condition (4.4) follows from the TASEP proof. Next,
we claim that, in order to prove that the Fredholm determinant solves (4.3), it is enough to
consider the case of PushTASEP, that is, r = 0, since the TASEP part of the dynamics was
already handled in Section 2. To see this, it is convenient to define Ft1,t2(X0;a) = det(I −
χ̄aK

PushASEP
t1,t2

χ̄a)	2({n1,...,nm}×Z) with

KPushASEP
t1,t2

(ni, ·;nj , ·) = −Qnj−ni 1ni<nj
+ (S−t1,−t2,−ni

)∗S̄epi(X0)−t1,−t2,nj
,

S−t1,−t2,−n = (e− 1
2 rt1∇−+2	t2∇+

Q−n)∗, S̄−t1,−t2,n = Q̄(n)e
1
2 rt1∇−−2	t2∇+

, and S̄epi(X0)−t1,−t2,nj
de-

fined analogously using S̄−t1,−t2,nj
, so that (4.3) will follow (after setting t1 = t2 = t) if we

prove that ( ∂
∂t1

+ ∂
∂t2

)Ft1,t2(X0;a) = L	,rFt1,t2(X0;a). But since L	,r = L	,0 + L0,r , it is
actually enough to prove that

(4.8)
∂

∂t1
Ft1,t2(X0;a) = L0,rFt1,t2(X0;a) and

∂

∂t2
Ft1,t2(X0;a) = L	,0Ft1,t2(X0;a).

The first of these is a version of the Kolmogorov equation for TASEP (1.1) where in the
contour integrals in (1.10) and (1.11) there are, respectively, additional factors ψ+(w) and
ψ−(w) inside the integrands, both independent of t , and it is not hard to see that the proof in
Section 2 works without any difficulty after this modification. We will prove below that (4.3)
holds in the PushTASEP case r = 0, and, inspecting the proof, it is easy again to see that this
implies the second equation in (4.8). We conclude that it suffices to check the case r = 0, and
we can also take 	 = 1 as it is just a scaling factor.

Given this reduction, one may naturally wonder why the proof works for PushASEP and
not ASEP. It just turns out that, when one tries to adapt Schütz’s formula [21] to include jumps
to the left (e.g., as done in [4]), the resulting formula ends up solving the push dynamics
instead of the leftward TASEP dynamics.

Having made these comments, we begin the proof. Proceeding as for TASEP, let k ∈
{1, . . . , n}, and consider the initial condition X0 and the one where particle k is moved one
step to the left along with its neighboring block. Write b for the length of this block. As for
TASEP, we need to compute

(4.9)

(
S̄epi(X̃0)−t,n − S̄epi(X0)−t,n

)
(z1, z2)

= EB0=z1

[
S̄−t,n−τ̃ (Bτ̃ , z2)1τ̃<n − S̄−t,n−τ (Bτ , z2)1τ<n

]
,

where now the tildes refer to the initial condition modified in this new way. We clearly have
τ = τ̃ , unless τ̃ ∈ {k−1, . . . , k+b−2} and Bτ̃ = X0(τ +1). But since the particles X̃0(j) for
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j ∈ {k, . . . , k +b−1} lie in a block, τ̃ ∈ {k −1, . . . , k +b−2} implies τ̃ = k −1 (because the
walk always jumps down by at least one step). This means that the above expectation equals

(4.10)
EB0=z1

[(
S̄−t,n−τ̃ (Bτ̃ , z2)1τ̃<n − S̄−t,n−τ (Bτ , z2)1τ<n

)
1τ̃=k−1,Bk−1=X0(k)

]
= fk(z1)g

(n)
k (z2)

with

fk(z) = PB0=z

(
τ̃ = k − 1,Bk−1 = X0(k)

)
and (see also the comment after (2.5) for the meaning of τ (k))

(4.11)
g

(n)
k (z) = (

S̄−t,n−k+1
(
X0(k), z

)
−EBk−1=X0(k)

[
S̄−t,n−τ (k)(Bτ(k) , z)1τ (k)<n

])
1k≤n

(note that fk does not depend on b but g
(n)
k does, through τ (k)). Since this is a rank one kernel,

the same arguments as in the TASEP case give

(4.12)

L0,1Ft(X0;a,n) = −det
(
I − χ̄aK

PushTASEP
t χ̄a

)
× tr

[(
I − χ̄aK

PushTASEP
t χ̄a

)−1
χ̄a

(
n∑

k=1

�(k)

)
χ̄a

]
,

where �(k) is defined exactly as in (2.6) but using the new versions of fk and g
(n)
k (note

that here L0,1 acts on all particles, since all particles are allowed to move in the PushTASEP
dynamics).

Now, we consider the left-hand side. As for TASEP, all we need to check in order to finish
the proof is that

(4.13)
d

dt
KPushTASEP

t = ∑
k≥1

�(k).

Now, we have

i,j := d

dt
KPushTASEP

t (ni, ·;nj , ·) =
(

d

dt
(S−t,−ni

)∗
)
S̄epi(X0)−t,nj

+ (S−t,−ni
)∗

(
d

dt
S̄epi(X0)−t,nj

)
,

and using (4.6) and (4.7) we have d
dt

(S−t,−n)
∗ = 2(S−t,−n)

∗∇+ and d
dt

(S̄−t,n)
∗ =

−2∇+(S−t,n)
∗. Therefore,

i,j = 2S−t,−ni
Hnj

with

(4.14)
Hn(z1, z2) = ∇+S̄epi(X0)−t,n (z1, z2) −EB0=z1

[∇+S̄−t,n(Bτ , z2)1τ<n

]
= S̄epi(X0)−t,n (z1 + 1, z2) −EB0=z1

[
S̄−t,n−τ (Bτ + 1, z2)1τ<n

]
.

The first term on the second line can be expressed as EB0=z1[S̄−t,n−τ̂ (Bτ̂ + 1, z2)1τ̂<n] with
τ̂ the hitting time of the strict epigraph of (X0(m + 1) − 1)m≥0, and thus

Hn(z1, z2) = EB0=z1

[
S̄−t,n−τ̂ (Bτ̂ + 1, z2)1τ̂<n − S̄−t,n−τ (Bτ + 1, z2)1τ<n

]
.
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Now, we have τ̂ ≤ τ , so the difference inside the brackets vanishes for τ̂ ≥ n, and it also
vanishes when τ̂ < n and Bτ̂ ≥ X0(τ̂ + 1) + 1. Thus, Hn(z1, z2) equals

(4.15)

n−1∑
k=0

PB0=z1

(
τ̂ = k,Bk = X0(k − 1)

)
× (

S̄−t,n−k

(
X0(k + 1) + 1, z2

)
−EBk=X0(k+1)

[
S̄−t,n−τ

(
B(k)

τ + 1, z2
)
1τ (k)<n

])
=

n−1∑
k=0

f̂k+1(z1)ĝ
(n)
k+1(z2)

with

f̂k(z) = PB0=z

(
τ̂ = k − 1,Bk−1 = X0(k)

)
and

(4.16) ĝ
(n)
k (z) = S̄−t,n−k+1

(
X0(k) + 1, z

) −EBk−1=X0(k)

[
S̄−t,n−τ (k)(Bτ(k) + 1, z)1τ (k)<n

]
.

We have then

i,j = 2
nj∑

k=1

S−t,−ni
f̂k(z1) ⊗ ĝ

(nj )

k (z2),

and so it remains to prove that f̂k = fk for all k and ĝ
(n)
k = 1

2g
(n)
k for k ≤ n (using as for

TASEP that g
(n)
k ≡ 0 for k > n).

For fixed k, let τ̃k denote the hitting time of the initial condition X̃0 introduced above
where the block starting at X0(k) is moved one step to the left, so that fk(z) = PB0=z(τ̃k =
k − 1,Bk−1 = X0(k)). We obviously have τ̂ ≤ τ̃k , and thus τ̂ = k − 1 and Bk−1 = X0(k)

implies τ̃k = k − 1, so that f̂k(z) = PB0=z(τ̂ = τ̃k = k − 1,Bk−1 = X0(k)). This gives

fk(z) − f̂k(z) = PB0=z

(
τ̃k > τ̂ = k − 1,Bk−1 = X0(k)

) = 0.

Next, we prove the identity ĝ
(n)
k = 1

2g
(n)
k for k ≤ n. Proceeding as for TASEP, we apply e2t∇+

on the right of this identity to see that it is equivalent to

(4.17)
Q̄(n−k+1)(X0(k) + 1, z

) −EBk−1=X0(k)

[
Q̄(n−τ (k))(Bτ(k) + 1, z)1τ (k)<n

]
= 1

2
Q̄(n−k+1)(X0(k), z

) − 1

2
EBk−1=X0(k)

[
Q̄(n−τ (k))(Bτ(k) , z)1τ (k)<n

]
.

Following again the TASEP argument, the two sides are of the form 2z times a polynomial in
z; so, it is enough to prove the equality for z < X0(n), in which case the identity becomes

PBk−1=X0(k)

(
Bn = z − 1, τ (k) ≥ n

) = 1

2
PBk−1=X0(k)

(
Bn = z, τ (k) ≥ n

)
,

which is easy to prove again since the walk takes Geom[1
2 ] steps to the left and z ≤ X0(n).
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