Open Access
September 2011 On the scaling limits of planar percolation
Oded Schramm, Stanislav Smirnov, Christophe Garban
Ann. Probab. 39(5): 1768-1814 (September 2011). DOI: 10.1214/11-AOP659

Abstract

We prove Tsirelson’s conjecture that any scaling limit of the critical planar percolation is a black noise. Our theorems apply to a number of percolation models, including site percolation on the triangular grid and any subsequential scaling limit of bond percolation on the square grid. We also suggest a natural construction for the scaling limit of planar percolation, and more generally of any discrete planar model describing connectivity properties.

Citation

Download Citation

Oded Schramm. Stanislav Smirnov. Christophe Garban. "On the scaling limits of planar percolation." Ann. Probab. 39 (5) 1768 - 1814, September 2011. https://doi.org/10.1214/11-AOP659

Information

Published: September 2011
First available in Project Euclid: 18 October 2011

zbMATH: 1231.60116
MathSciNet: MR2884873
Digital Object Identifier: 10.1214/11-AOP659

Subjects:
Primary: 60K35
Secondary: 28C20 , 60G60 , 82B43

Keywords: noise , percolation , Scaling limit

Rights: Copyright © 2011 Institute of Mathematical Statistics

Vol.39 • No. 5 • September 2011
Back to Top