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ON THE SCALING LIMITS OF PLANAR PERCOLATION
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Microsoft Research, Université de Genève and
CNRS, ENS Lyon

We prove Tsirelson’s conjecture that any scaling limit of the critical pla-
nar percolation is a black noise. Our theorems apply to a number of percola-
tion models, including site percolation on the triangular grid and any subse-
quential scaling limit of bond percolation on the square grid. We also suggest
a natural construction for the scaling limit of planar percolation, and more
generally of any discrete planar model describing connectivity properties.

1. Introduction.

1.1. Motivation. This paper has a two-fold motivation: to propose a new con-
struction for the (subsequential) scaling limits of the critical and near-critical per-
colation in the plane, and to show that such limits are two-dimensional black noises
as suggested by Boris Tsirelson.

Percolation is perhaps the simplest statistical physics model exhibiting a phase
transition. We will be interested in planar percolation models, the archetypical
examples being site percolation on the triangular lattice and bond percolation on
the square lattice. More generally, our theorems apply to a wide class of models
on planar graphs, satisfying the assumptions outlined below.

Consider a planar graph and fix a percolation probability p ∈ [0,1]. In site
percolation, each site is declared open or closed with probabilities p and 1 − p,
independently of others. In the pictures, we represent open and closed sites by
blue and yellow colors correspondingly. One then studies open clusters, which are
maximal connected subgraphs of open sites. In bond percolation, each bond is
similarly declared open or closed independently of others, and one studies clusters
of bonds.

Percolation as a mathematical model was originally introduced by Broadbent
and Hammersley to model the flow of liquid through a random porous medium. It
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is assumed that the liquid can move freely between the neighboring open sites, and
so it can flow between two regions if there is an open path between them. Fixing
a quad Q (= a topological quadrilateral), we say that there is an open crossing
(between two distinguished opposite sides) for a given percolation configuration,
if for its restriction to the quad, there is an open cluster intersecting both opposite
sides. One then defines the crossing probability for Q as the probability that such
a crossing exists.

We will be interested in the (subsequential) scaling limits of percolation, as the
lattice mesh tends to zero. It is expected that for a large class of models the sharp
threshold phenomenon occurs: there is a critical value pc such that for a fixed
quad Q the crossing probability tends to 1 for p > pc and to 0 for p < pc in the
scaling limit. For bond percolation on the square lattice and site percolation on the
triangular lattice, it is known that pc = 1/2 by the classical theorem of Kesten [20].

In the critical case p = pc the crossing probabilities are expected to have non-
trivial scaling limits. Moreover, those are believed to be universal, conformally
invariant, and given by Cardy’s formula [8, 23]. For the models we are concerned
with, this was established only for site percolation on the triangular lattice [34, 35].
However, the Russo–Seymour–Welsh theory provides existence of nontrivial sub-
sequential limits, which is enough for our purposes. Our theory also applies to
near-critical scaling limits like in [29], when the mesh tends to zero and the per-
colation probability to its critical value in a coordinated way, so as the crossing
probabilities have nontrivial limits, different from the critical one. The Russo–
Seymour–Welsh theory still applies below any given scale.

Having a (subsequential) scaling limit of the (near) critical percolation, we can
ask how to describe it. The discrete models have finite σ -fields, but in the scal-
ing limit the cardinality blows up, so we have to specify how we pass to a limit.
First, we remark that we restrict ourselves to the crossing events (which form the
original physical motivation for the percolation model), disregarding events of the
sort “number of open sites in a given region is even” or “number of open sites
in a given region is bigger than the number of closed ones.” While such events
could be studied in another context, they are of little interest in the framework mo-
tivated by physics. Furthermore, we restrict ourselves to the macroscopic crossing
events, that is, crossings of quads of fixed size. Otherwise, one could add to the
σ -field crossing events for microscopic quads (of the lattice mesh scale or some
intermediate scale), which have infinitesimal size in the scaling limit. The result-
ing construction would be an extension of ours, similar to a nonstandard extension
of the real numbers. But because of the locality of the percolation, different scales
are independent, so it won’t yield new nontrivial information (as our results in fact
show). However, we would like to remark that in dependent models such exten-
sions could provide new information. For example, Kenyon has calculated proba-
bilities of local configurations appearing in domino tilings and loop erased random
walks [19], while such information is lost in describing the latter by an SLE curve.
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Summing it up, we restrict ourselves only to the scaling limit of the macro-
scopic crossing events for percolation—it describes the principal physical prop-
erties (though adding microscopic events can be of interest). The question then
arises, how to describe such a scaling limit, and several approaches were proposed.
We list some of them along with short remarks:

(1) Random coloring of a plane into yellow and blue colors would be a logical
candidate, since in the discrete setting we deal with random colorings of graphs.
However, it is difficult to axiomatize the allowed class of “percolation-induced
colorings,” and connectivity properties are hard to keep track of. In particular, in
the scaling limit almost every point does not belong to a cluster, but is rather sur-
rounded by an infinite number of nested open and closed clusters, and so has no
well-defined color.

(2) Collection of open clusters as random compact subsets of the plane would
satisfy obvious precompactness (for Borel probability measures on collections of
compacts endowed with some version of the Hausdorff distance), guaranteeing ex-
istence of the subsequential scaling limits. However, crossing probabilities cannot
be extracted: as a toy model imagine two circles, O and C, intersecting at two
points, x and y. Consider two different configurations: in the first one, O \ {x} is
an open crossing and C \ {y} is a closed one; in the second one, O \ {y} is an open
crossing and C \ {x} is a closed one. In both configurations, the cluster structure
is the same (with O being the open and C being the closed cluster), while some
crossing events differ. Thus one has to add the state of the “pivotal” points (like x

and y) to the description, making it more complicated. Constructing such a limit,
proving its uniqueness, and studying it would require considerable technical work.

(3) Aizenman’s web represents percolation configuration by a collection of all
curves (= crossings) running inside open clusters. Here pre-compactness follows
from the Aizenman–Burchard work [1], based on the Russo–Seymour–Welsh the-
ory, and crossing events are easy to extract. Moreover, it turns out that the curves
involved are almost surely Hölder-continuous, so this provides a nice geometric
description of the connectivity structure. However, there is a lot of redundancy in
taking all the curves inside clusters, and there are deficiencies similar to those of
the previous approach.

(4) Loop ensemble—instead of clusters themselves, it is enough to look at the
interfaces between open and closed clusters, which form a collection of nested
loops. Such a limit was constructed by Camia and Newman in [7] from Schramm’s
SLE loops. However, it was not shown that such a limit is full (i.e., contains all the
crossing events), and in general, extracting geometric information is far from being
straightforward.

(5) Branching exploration tree—there is a canonical way to explore all the dis-
crete interfaces: we follow one, and when it makes a loop, branch into two created
components. The continuum analogue was studied (in relation with the loop en-
sembles) by Sheffield in [33], and this is perhaps the most natural approach for
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general random cluster models with dependence; see [18]. Construction is rather
technical, however the scaling limit can be described by branching SLE curves and
so is well suited for calculations.

(6) Height function—in the discrete setting one can randomly orient interfaces,
constructing an integer-valued height function, which changes by ±1 whenever
an interface is crossed. This stores all the connectivity information (at least in our
setup of interfaces along the edges of trivalent graphs), but adds additional ran-
domness of the height change. It is expected that after appropriate manipulations
(e.g., coarse-graining and compactifying—i.e., projecting mod 1 to a unit interval)
the height function would converge in the scaling limit to a random distribution,
which is a version of the free field. This is the cornerstone of the “Coulomb gas”
method of Nienhuis [28], which led to many a prediction. It is not immediate
how to connect this approach to the more geometric ones, retrieving the interfaces
(= level curves) from the random distribution, but SLE theory suggests some pos-
sibilities. Also it is not clear whether we can implement this approach so that the
extra randomness disappears in the limit, while the connectivity properties remain.

(7) Correlation functions—similarly to the usual Conformal Field Theory ap-
proach, instead of dealing with a random field as a random distribution, we can re-
strict our attention to its n-point correlations. For example, that would be the usual
physics framework for fields arising in approach (6), but to implement it mathemat-
ically we would need to reconstruct height lines of a field, based on its correlations,
which is perhaps more difficult than developing (6) by itself, and possibly requires
some extra assumptions on the field. A more geometric approach would be to study
for every finite collection of points {zk

j }j,k the probability Fr(z
k
j )j,k that for every

k all the balls {B(zk
j , r)}j are connected by an open cluster. To obtain the corre-

lation function, one takes the double limit, passing to the scaling limit first and
sending r → 0 afterwards. Since the probability of a radius r ball being touched
by a macroscopic cluster (conjecturally) decays as r5/48, one has to normalize ac-

cordingly, considering F as a
∏

j,k |dzk
j |5/48

-form. The geometric approach seems
more feasible, but along the way one would have to further develop a version of
CFT corresponding to such “connectivity” correlations.

(8) Collection of quads crossed—in the discrete setting one can describe a per-
colation configuration by listing the finite collection of all discrete quads (i.e.,
topological quadrilaterals) having an open crossing. We propose a continuous ana-
logue, described in detail below. The percolation configuration space thus becomes
a space of quad collections, satisfying certain additional properties.

(9) Continuous product of probability spaces, or noise—this approach was
advocated by Tsirelson [38–40]. In the discrete setting, the site percolation
(on a set V of vertices) is given by the product probability space (�V =∏

V {open, closed}, FV ,μV ). Note that when V is decomposed into two disjoint
subsets, we obviously have

FV = FV1 × FV2 .(1.1)
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Straightforward generalization of the product space to the continuous case does
not work: the product σ -field for the space

∏
C{open, closed} won’t contain cross-

ing events. Instead Tsirelson proposed to send the percolation measure space to a
scaling limit, described by a noise or a homogeneous continuous product of prob-
ability spaces. Namely, for every smooth domain D the percolation scaling limit
inside it would be given by a probability space (�D, FD,μD), which is translation
invariant, continuous in D, and satisfies the property (1.1) for a smooth domain V

cut into two smooth domains V1, V2 by a curve. There is a well-developed theory
of such spaces, but establishing the latter property was problematic [40].

To most constructions, one can also add the information about the closed clusters,
though in principle it should be retrievable from the open ones by duality. This
list is not exhaustive, but it shows the variety of possible descriptions of the same
object. Indeed, in the discrete settings the approaches above contain all the infor-
mation about macroscopic open clusters, and are expected to keep it in the scaling
limit; on the other hand with an appropriate setup [one has to be careful, especially
with (6)], we do not expect to pick up any extra information on the way. However,
showing that most of these approaches lead to equivalent results, and in particular
to isomorphic σ -fields, is far from easy.

We decided to proceed with the approach (8), since it follows the original phys-
ical motivation for the percolation model, and also provides us with enough pre-
compactness to establish existence of subsequential scaling limits before we apply
any percolation techniques.

It also serves well our second purpose: to provide escription of the percolation
(subsequential) scaling limits, following Tsirelson’s approach (9), and show that
it is a noise, that is, a homogeneous continuous (parameterized by an appropri-
ate Boolean algebra of piecewise-smooth planar domains) product of probability
spaces.

The question whether critical percolation scaling limit is a noise was posed by
Tsirelson in [38–40], where he has also noted that such noise must be nonclassical,
or black (compared to the classical white noise). The theory of black noises was
started by Tsirelson and Vershik in [41]. In particular, they constructed the first
examples of zero and one-dimensional black noises (and more of those were found
since); we provide the first genuinely two-dimensional example.

To establish that percolation leads to noise, it is enough to prove that its scal-
ing limit, restricted to two adjacent rectangles, determines the scaling limit in their
union. Following is a version of this result, perhaps more tangible (though stated
slightly informally here). It is proved in Proposition 4.1, which is the most techni-
cal result of our paper. Consider a rectangle, and a smooth path α cutting it. We
show that for every ε > 0 there is a finite number of percolation crossing events
in quads disjoint from α, from which one can reliably predict whether or not the
rectangle is crossed, in the sense that the probability for a mistake is less than ε.
The essential point is that the set of crossing events that one looks at does not de-
pend on the mesh of the lattice, which allows us to deduce the needed result, thus
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showing that any subsequential scaling limit of the critical percolation is indeed a
black noise.

1.2. Percolation basics and notation. For completeness of exposition, we
present most of the needed background below; interested readers can also consult
the books [4, 16, 21, 42].

We start with a rather general setup, which in particular includes all planar site
and bond models (as well as percolation on planar hypergraphs; cf. [5]). Since we
will be interested in scaling limits, it is helpful from the very beginning to work
with subsets of the plane, rather than graphs.

We consider a locally finite tiling H of the plane (or its subdomain) by topo-
logically closed polygonal tiles P . Furthermore, we ask it to be trivalent, meaning
that at most three tiles meet at every vertex and so any two tiles are either dis-
joint or share a few edges. A percolation model fixes a percolation probability
p(P ) ∈ [0,1] for every tile P , and declares it open (or closed) with probability
p(P ) [or 1 − p(P )] independently of the others. In principle, we can work with
a random tiling H , with percolation probabilities p(P,H) satisfying appropriate
measurability conditions (so that crossing events are measurable).

More generally, we can consider a random coloring of tiles into open and closed
ones, given by some measure μ on the space

∏
P∈H {open, closed} with a product

σ -field (which contains all events concerned with a finite number of tiles). Perco-
lation models correspond to product measures μ.

We define open (closed) clusters as connected topologically closed subsets of
the plane—components of connectivity of the union of open (closed) tiles taken
with boundary.

All site and bond percolation models on planar graphs can be represented in this
way. Indeed, given a planar site percolation model, we replace sites by tiles, so that
two of them share a side if and only if two corresponding sites are connected by a
bond. It is easy to see that such a collection always exists (e.g., tiles being the faces
of the dual graph; see Figure 1 for the triangular lattice case). Each tile is declared
open (or closed) with the same probability p (or 1 − p) as the corresponding site.

FIG. 1. Critical site percolation on the triangular lattice. Each site is represented by a hexagonal
tile, which is open (blue) or closed (yellow) with probabilities 1/2 independently of others. Interfaces
between open and closed clusters are pictured in bold.
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If our original graph is a triangulation, then the dual one is trivalent and only
three tiles can meet at a point. However, when our graph has a face with four or
more sides, two nonadjacent sites can correspond to tiles sharing a vertex (but
not an edge). To resolve the resulting ambiguity we insert a small tile P around
every tiling vertex, where four or more tiles meet, and set it to be always closed,
taking p(P ) = 0. After the modification, at most three tiles can meet at a point, as
required.

Bond percolation can also be represented by partitioning the plane into tiles.
There will be a tile for every bond, site, and face of the original bond graph, chosen
so that two different face-tiles or two different site-tiles are disjoint. Moreover,
a bond-tile shares edges with two site-tiles and two face-tiles, corresponding to
adjacent sites and faces. The bond-tiles are open (or closed) independently, with
the same probability p (or 1 − p) as the corresponding bonds. The site-tiles P are
then always open [p(P ) = 1], while the face-tiles P are always closed [p(P ) = 0].
With such construction, no ambiguities arise, and at most three tiles can meet at
a point. A possible construction for the bond percolation (with octagons being the
bond-tiles) is illustrated in Figure 2.

Following the original motivation of Broadbent and Hammersley, we represent
holes in some random porous medium by open tiles. A liquid is assumed to move
freely through the holes, thus it can flow between two regions if there is a path
of open tiles between them. More precisely, we say that there is an open (closed)
crossing between two sets K1 and K2 inside the set U , if for the percolation con-
figuration restricted to U , there is an open (closed) cluster intersecting both K1
and K2. We will be mostly interested in crossings of quads (= topological quadri-
laterals).

Note the following duality property: there is an open crossing between two op-
posite sides of a quad if and only if there is no dual (i.e., closed) crossing between
two other sides. Exchanging the notions of open and closed, we conclude that, on
a given tiling, percolation models with probabilities p(P ) and p∗(P ) = 1 − p(P )

FIG. 2. Left: critical bond percolation on the square lattice, every bond is open (blue) or closed
(yellow) with probabilities 1/2 independently of others. Right: representation by critical percolation
on the bathroom tiling, with direction of original bonds marked on the corresponding octagonal tiles.
Rhombic tiles alternate in color, with blue (always open) corresponding to the sites of the original
square lattice, while yellow (always closed)—to the faces. Octagonal tiles correspond to the bonds,
and are open or closed independently, with probabilities 1/2.
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are dual to each other. In particular, the model with p(P ) ≡ 1/2 is self-dual, which
can often be used to show that it is critical, like for the hexagonal lattice. The
bathroom-tile model of the square lattice bond percolation in Figure 2 is dual to it-
self translated by one lattice step (so that always open rhombi are shifted to always
closed ones), which also leads to its criticality, [20]. There are, however, dualities
(e.g., arising from the star-triangle transformations) with more complicated rela-
tions between p and p∗, and so there are critical models with p away from 1/2;
see, for example, [5, 43].

Though we have in mind critical models, we do not use criticality in the proof,
rather some crossing estimates, which are a part of the Russo–Seymour–Welsh
theory. Those also hold (below any given scale) for the near-critical models, like
those discussed in [29]. In a sense the estimates we need should hold whenever the
crossing probabilities do not tend to a trivial limit; see Remark 1.3.

We work with a collection of percolation models μη (and sometimes more gen-
eral random colorings) on tilings Hη, indexed by a set {η} (e.g., square lattices of
different mesh), and denote by μη also the corresponding measure on percolation
configurations (= random coloring of tiles). By |η| ∈ R+, we will denote a “scale
parameter” of the model μη. We assume that all tiles have diameter at most |η|
(for a percolation on random tiling, our proof would work under the relaxed as-
sumption that for any positive r , the probability to find in a bounded region a tile
of diameter bigger than r tends to zero as |η| → 0). This parameter also appears
in the Russo–Seymour–Welsh-type estimates below, which have to hold on scales
larger than |η|. Note that in most models |η| can be taken to be the supremum of
tile diameters (or the lattice mesh for the percolation on a lattice).

We will be interested in scaling limits as the scale parameter tends to zero, look-
ing at sequences of percolation models with |η| → 0, which do not degenerate in
the limit. We will show in Remark 1.17, that in our setting working with sequences
and nets yields the same results. As discussed above, all critical percolation models
are conjectured to have a universal and conformally invariant scaling limit. More-
over, its SLE description allows to calculate exactly many scaling exponents and
dimensions and we will use this conjectured picture in informal discussions below.
However, to make our paper applicable to a wider class of models, we will work
under much weaker assumptions.

The famous Russo–Seymour–Welsh theory provides universal bounds for cross-
ing probabilities of the same shape, superimposed over lattices with different mesh.
Originally established for the critical bond percolation on the square lattice, it has
been since generalized to many critical (and near-critical, when the percolation
probabilities tend to their critical values at appropriate speeds as the mesh tends
to zero) models with several different approaches; see [4, 16, 21, 42]. We will use
one of the recurrent techniques: conditioning on the lowest crossing. If a quad is
crossed horizontally, one can select the lowest possible crossing (the closest to the
bottom side), which will then depend only on the configuration below. If we con-
dition on the lowest crossing, the configuration above it is unbiased, allowing for
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easy estimates of events there. Besides using this neat trick, we will assume certain
bounds on the crossing probabilities for the annuli.

A prominent role is played by the so-called k-arm crossing events in annuli,
since they control dimensions of several important sets. In particular, for a given
percolation model μη we denote by P 1

η (z, r,R) the probability of a one-arm event,
that there is an open crossing connecting two opposite circles of the annulus
A(z, r,R). Then this is roughly the probability that the disc B(z, r) intersects an
open cluster of size ≈ R, which is expected for |η| < r to have a power law like

P 1
η (z, r,R) = (r/R)a1+o(1) as r/R → 0,

morally meaning (modulo some correlation estimates) that percolation clusters in
the scaling limit have dimension 2 − a1.

Similarly, denote by P 4
η (z, r,R) the probability of a four-arm event, that there

are alternating open–closed–open–closed crossings connecting two opposite cir-
cles of the annulus A(z, r,R). Then this is roughly the probability that changing
the percolation configuration on the disc B(z, r) changes the crossing events on
the scale ≈ R. Indeed, if all the tiles in B(z, r) are made open, that connects two
open arms; while making them closed connects two closed arms, destroying the
open connection. For |η| < r a power law

P 4
η (z, r,R) = (r/R)a4+o(1) as r/R → 0

is expected, roughly meaning that the pivotal tiles (such that altering their state
changes crossing events on large scale) have dimension 2 − a4 in the scaling limit.

Whenever the RSW theory applies, the probabilities for k arm events have
power law bounds from above and below as r → 0. In fact, the probabilities are
conjectured to satisfy universal (independent of a particular percolation model)
power laws with rational powers, predicted by the Conformal Field Theory; see
discussion in [36]. Those predictions have been so far proved for the critical site
percolation on triangular lattice only [26, 36], giving a1 = 5/48 and a4 = 5/4.

Other k-arm probabilities are also of interest, but estimating just the mentioned
two allows to apply our methods. Roughly speaking, we need to know that the
percolation clusters have dimension smaller than 2 and that pivotal points have di-
mension smaller than 1, or, in other words, that a1 > 0 and a4 > 1. Note that we do
not actually need the power laws, but rather weaker versions of the corresponding
upper estimates.

Namely, we need the following two estimates to hold uniformly for percolation
models under consideration.

ASSUMPTIONS 1.1. There exist positive functions �1(r,R) and �4(r,R),
such that

lim
r→0

�j(r,R) = 0 for any fixed R < R0,

and the following estimates hold whenever z ∈ C and 0 < |η| < r < R < R0. The
probability of one open arm event and the probability of a similar event for one
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closed arm satisfy

P 1
η (z, r,R) ≤ �1(r,R),(1.2)

while the probability of a four arm event satisfies

P 4
η (z, r,R) ≤

(
r

R

)
· �4(r,R).(1.3)

For r ≥ R, when the annulus is empty, we set �j(r,R) := 1, so that the function
is defined for all positive arguments. Without loss of generality, we can assume that
functions �j(r,R) are increasing in r and decreasing in R.

REMARK 1.2 (A stronger RSW estimate). For most percolation models where
the RSW techniques work, their application would prove a stronger estimate, with
�1(r,R) replaced in (1.2) by C(r/R)a1 with a1 > 0. However, we can imagine
situations where only our weaker version can a priori be established.

REMARK 1.3 (RSW estimates and scaling limits). For most percolation mod-
els where the RSW techniques work, the estimate (1.2) would be equivalent to
saying that crossing probability for any given quad (or for all quads) is uniformly
bounded away from 0 and 1. So morally our noise characterization would apply
whenever one can speak of nontrivial subsequential scaling limits of crossing prob-
abilities.

The first assumption (1.2) is used several times throughout the paper. In a
stronger form, it was one of the original Russo–Seymour–Welsh results, and has
since been shown to hold for a wide range of percolation models; see [4, 5, 16, 21].
For site percolation on the triangular lattice, one can take �1(r,R) ≈ (r/R)5/48;
see [26].

The second assumption (1.3) is used only once, namely in the proof of Theo-
rem 1.5. It is known [in a sharp form with �4(r,R) ≈ (r/R)1/4] for site perco-
lation on the triangular lattice; see [36]. Christophe Garban kindly allowed us to
include as Appendix B his proof for bond percolation on the square lattice, which
is partly inspired by the noise-sensitivity arguments in [3]. It seems possible to
extend the proof to a wider range of percolation models (by changing the values
of the Cj random variables so they become centered, rather than using symmetry
arguments).

QUESTION 1.4 (Estimating pivotals). For which models can (1.3) be proved?
Can it be deduced from (1.2)? Is there a geometric argument?

Summing up the discussion above, we study collections of percolation mod-
els satisfying Assumptions 1.1. In particular, our results apply to critical and
near-critical site percolation on the triangular lattice and bond percolation on
the square lattice.
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1.3. Definition of the scaling limits. Every discrete percolation configuration
(or a coloring of a tiling) is clearly described by the collection of quads (= topo-
logical quadrilaterals) which it crosses (and for a fixed lattice mesh in a bounded
domain a finite collection of quads would suffice). We introduce a setup, which
allows to work independently of the lattice mesh and pass to the scaling limit,
but the idea remains the same: a percolation configuration is encoded by a collec-
tion of quads—those which are crossed by clusters. Our setup is inspired by the
Dedekind’s sections and uses the metric and ordering on the space of quads. The
ordering comes from the obvious observation that crossing of a quad automatically
contains crossings of “shorter” sub-quads, and so possible percolation configura-
tions (= quad collections) should satisfy certain monotonicity properties.

We will work in a domain D ⊂ C = R
2. A quad in D is a topological quadrilat-

eral, that is, a homeomorphism Q : [0,1]2 → Q([0,1]2) ⊂ D. We introduce some
redundancy when considering quads as parameterized quadrilaterals, but we avoid
certain technicalities. The space of all such quads will be denoted by Q = QD . It
is a metric space under the uniform metric

d(Q1,Q2) = sup
z∈[0,1]2

|Q1(z) − Q2(z)|.

A crossing of Q is a connected compact subset of [Q] := Q([0,1]2) that intersects
both opposite sides ∂0Q := Q({0} × [0,1]) and ∂2Q := Q({1} × [0,1]}). We also
denote the remaining two sides by ∂1Q := Q([0,1] × {0}) and ∂3Q := Q([0,1] ×
{1}), see Figure 3. The whole boundary of Q we denote by ∂Q. In the discrete
setting there is no difference between connected and path-connected crossings,
but one can imagine lattice models where the probabilities of the two would be
different in the scaling limit. However, for the models under consideration, every
crossing in the scaling limit almost surely can be realized by a Hölder continuous
curve [1], so the two notions are essentially the same.

In addition to the structure of QD as a metric space, we will also use the fol-
lowing partial order on QD . If Q1,Q2 ∈ QD , we write Q1 ≤ Q2 if every crossing
of Q2 contains a crossing of Q1. The simplest example is seen in Figure 4. Also,
we write Q1 < Q2 if there are open (in the uniform metric) neighborhoods U1
of Q1 and U2 of Q2 in QD , such that for every Q ∈ U1 and Q′ ∈ U2 we have

FIG. 3. A quad with a crossing.
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FIG. 4. Any crossing of Q2 contains a crossing of Q1, so we write Q1 ≤ Q2.

Q ≤ Q′. Thus, the set of pairs (Q,Q′) ∈ Q2 satisfying Q < Q′ is the interior of
{(Q,Q′) ∈ Q2 : Q ≤ Q′} in the product topology.

A subset S ⊂ QD is a lower set if, whenever Q ∈ S and Q′ ∈ QD satisfies
Q′ < Q, we also have Q′ ∈ S. The collection of all closed lower subsets of QD

will be denoted HD . Any discrete percolation configuration ω in C is naturally
associated with an element Sω of HD : the set of all quads for which ω contains a
crossing formed by an open cluster. Thus, a percolation model on the tiling Hη

induces a probability measure μη on HC (and more generally on HD for any
domain D contained in its domain of definition).

A topology is defined on HD by specifying a subbase. If U ⊂ QD is topologi-
cally open and Q ∈ QD , let

VU := {S ∈ HD :S ∩ U �= ∅}
and

V Q := {S ∈ HD :Q /∈ S}.
If we regard S as a collection of crossed quads, then

VU := {S : some quads from U are crossed}
and

V Q := {S : quad Q is not crossed}.
Our topology of choice on HD will be the minimal topology TD which con-

tains every such VU and V Q. As we will see, (HD, TD) is a metrizable compact
Hausdorff space. The percolation scaling limit configuration will be defined as
an element of HC, and the scaling limit measure is a Borel probability measure
on HC.

Then the event of a percolation configuration crossing a quad Q corresponds to

�Q := ¬V Q = {S ∈ H :Q ∈ S} ⊂ H.

We will prove that if Q0 ⊂ Q is dense in Q, then the events �Q for Q ∈ Q0,
generate the Borel σ -field of H.
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1.4. Statement of main results. Construction of the (subsequential) scaling
limits is accomplished for all random colorings of trivalent tilings without addi-
tional assumptions. Other results of this paper apply to all percolation models on
trivalent tilings, satisfying Assumptions 1.1, that is, the RSW estimate (1.2) and
the pivotal estimate (1.3).

As discussed above, we fix a collection of such percolation models indexed by a
set {η}, and denote by μη the (locally) discrete probability measure on percolation
configurations for the model corresponding to parameter η. By |η| ∈ R+, we de-
note the scale parameter of the model (which enters in the RSW estimates). Later
we will show that μη has subsequential scaling limits as |η| → 0, and will work
with one of those, denoted by μ0.

First, we present a simplified discrete version of the gluing theorem. Informally,
the statement is that if you fix a quad Q0 and a finite length path α cutting it into
two pieces, then the discrete percolation configuration outside a small neighbor-
hood of α reliably predicts the existence or nonexistence of a crossing of Q0 with
probability close to one, uniformly in the mesh size.

Following is the precise version, estimating the random variable which is the
conditional probability of observing an open crossing given the configuration s-
away from α. As a regularity assumption, we need a constant C(α) such that for
every s > 0 the set α can be covered by at most C(α)/s balls of radius s. This
is the case if and only if α has finite one-dimensional upper Minkowski content
M∗1(α) = lim sups→0+(area{z : dist(z,α) < s}).

THEOREM 1.5 (Discrete gluing). Consider a collection of percolation models
satisfying Assumptions 1.1. Let Q0 ∈ Q be some quad, and let α ⊂ [Q0] be a finite
union of finite length paths, or more generally a set of finite one-dimensional upper
Minkowski content. Let �Q0 denote the event that Q0 is crossed by ω, and for each
s > 0 let Fs denote the σ -field generated by the restriction of ω to the complement
of the s-neighborhood of α. Then for every ε > 0,

lim
s↘0

sup
|η|∈(0,s)

μη

(
ε < μη(�Q0 | Fs) < 1 − ε

) = 0.

REMARK 1.6 (Gluing is nonconstructive). Theorem 1.5 essentially states that
event �Q0 for any given η can be reconstructed with high accuracy by sampling
crossing events away from α. This does not lead to the noise characterization of
the scaling limit, since a priori the number of events we need to sample can grow
out of control as |η| → 0. We address this by providing a uniform bound on the
number of events to be sampled in Proposition 4.1. However, we do not give a
recipe, and in general the gluing procedure may still depend on η. We deal with
this possibility by assuming that there is a (subsequential) scaling limit, then, since
the number of possible outcomes of sampling a finite number of crossing events is
finite, we can choose a sub-subsequence along which the same procedure is used.
The downside is that, in the current form, our results alone cannot be used to show
the uniqueness of the percolation scaling limit.
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The previous remark leads to the following:

QUESTION 1.7 (Constructive gluing). Can one show that there is an inde-
pendent of η and preferably constructive procedure to predict �Q0 by sampling
crossing events away from α?

A positive answer would provide an elegant proof of the uniqueness of the scal-
ing limit (provided Cardy’s formula is known), make the universality phenomenon
more accessible, and lay foundation for the renormalization theory approach to
percolation, similar to one discussed by Langlands; see [24] and the references
therein. A particularly optimistic scenario is suggested in Conjecture 1.11.

Theorem 1.5 is a toy version of our main gluing results, and the logic behind it
was folklore for a long time (but strangely enough appeared few times in print, as
was pointed out in [37]). The proof proceeds by consequently resampling radius
2s balls covering the s-neighborhood of α and using the pivotal estimate (1.3). For
this to work, the bounds have to sum up to something small, and so with better
pivotal estimates we can relax assumptions on α (and the number of balls needed
to cover it).

REMARK 1.8 (Regularity assumptions on α). When applying the pivotal es-
timate (1.3), we cannot relax the regularity assumption that α has finite one-
dimensional upper Minkowski content. However, as discussed above, most per-
colation models are expected to satisfy stronger estimates, and then the regularity
assumption can be considerably weakened (though it cannot be dropped). The set
of pivotal points conjecturally has Hausdorff dimension 3/4 in the scaling limit
(proved on the triangular lattice in [36]), so if the Hausdorff dimension of the set
α is greater than 5/4, the two should intersect with positive probability (needed
correlation estimates are expected to hold). In such a situation, there is little hope
to reliably determine the crossing without knowledge of α. To be more rigorous,
instead of pivotals one has to work with the percolation spectrum, but it has the
same dimension (see [13] for the definition and discussion), so α has to be of di-
mension at most 5/4. On the other hand, our proof works for sets α of dimension
smaller than 2 minus dimension of the pivotal points, provided also that α ∩ ∂Q0
is finite. So 5/4 seems to be the correct-dimensional threshold, and this can be
established for the critical site percolation on the triangular lattice.

REMARK 1.9 (Crossings with finite intersection number). Suppose that a
smooth curve α cuts the quad Q0 into two quads Q+ and Q−. The following
informal discussion concerns the critical percolation scaling limit, assuming its
existence and conformal invariance (but it can be easily made more precise by
working with the limits of discrete configurations and events). First observe that
open clusters inside Q± intersect the smooth boundary α on a set of Hausdorff
dimension 2/3 (and we have a control for the correlation of points inside it). Being
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independent, two large open clusters on opposite sides of α have a positive prob-
ability of touching. But if they touch at some point x ∈ α, we cannot have a large
closed cluster passing through x and separating them. Indeed, that would mean a
four-arm event occurring at the pivotal point x on the smooth curve α, and since
a4 = 5/4, the set of pivotal points has Hausdorff dimension 3/4 and so almost
surely does not intersect the smooth α. Thus, the two open clusters in Q± which
touch on α are in fact parts of the same large open cluster in Q0. We conclude, that
given a smooth curve α, with positive probability there is a crossing of Q0 which
intersects α only once.

The last remark says that for a smooth curve α, if we condition on the quad
being crossed, the probability of finding a crossing intersecting α only finitely
many times is positive. We can ask whether this conditional probability is one,
leading to the following:

CONJECTURE 1.10 (Finite intersection property). Let Q be a quad and α a
smooth curve. Then in the scaling limit, given existence of a crossing, there is
almost surely a crossing intersecting α only a finite number of times.

Alternatively, one can formulate a discrete version, which is a priori stronger
(for an equivalent one we would have to count small scale packets of intersections):

CONJECTURE 1.11 (Tightness of intersections). Let Q be a quad and α a
smooth curve. For a discrete percolation measure μη, let the random variable
Nη = Nη(Q,α) be the minimal possible number of intersections with α for a cross-
ing of Q (and 0 if Q is not crossed). Then Nη is tight as |η| → 0.

Proving either of these conjectures would not only simplify our proof of the
main theorem, but also provide an easy and constructive “gluing procedure”: we
take all “excursions” (= crossings in the complements of α) and check whether a
crossing of Q can be assembled from finitely many of them (as discussed in Re-
mark 1.9, the finite number of excursions will necessarily connect into one cross-
ing). Such a procedure would give a very short proof of the uniqueness of the full
percolation scaling limit, provide an elegant setup for the renormalization theory
of percolation crossings, and show that the “finite model” discussed by Langlands
and Lafortune in [25] indeed approximates the critical percolation. Note that if
conjectures above fail, the constructive procedure for gluing crossings will have to
deal with countably many excursions intersecting α on a Cantor set C. Then the
criterion for possibility of gluing the excursions into one crossing is likely to be in
terms of some capacitary (or dimensional) characteristics of C.

The critical percolation scaling limit is conjectured to be conformally invariant,
which was established for site percolation on the triangular lattice [34, 35]. In
Remark 1.9, we mentioned that, for a given quad Q0, a smooth curve α has the
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property that two large clusters inside two components of [Q0] \ α touch each
other (on α) with positive probability. One can ask, whether an arbitrary curve
α would always enjoy this property, and the answer is negative. Moreover, under
conformal invariance assumption, this property (equivalent to positive probability
of finding a crossing intersecting α only finitely many times) can be reformulated
in terms of multifractal properties of harmonic measure on two sides of α. Below
we present an informal argument to this effect, note also similar discussions in the
SLE context in [15].

To simplify the matters, we discuss a related (and probably equivalent) property
that the expected number of such touching points for two large clusters inside two
components of [Q0] \ α is positive (or even infinite). Let f (a+, a−) be the two-
sided dimension spectrum of harmonic measure on α; see [2]. Roughly speaking,
f (a+, a−) is the dimension of the set of z ∈ α where harmonic measures ω± on
two sides of α have power laws a±:

ω+(B(z, r)) ≈ ra+, ω−(B(z, r)) ≈ ra− .

Consider a set E ⊂ α such that harmonic measures ω± have power laws a± on E.
Cover most of E by a collection of balls Bj of small radii rj . By conformal in-
variance, the probability of a ball Bj to be touched by a large open cluster on the
“+ side” of α is governed by its harmonic measure and Cardy’s formula [35] that
gives the exponent 1/3:

P+(Bj ) ≈ ω+(Bj )
1/3 ≈ r

a+/3
j .

Combining with the similar estimate on the “− side,” we write an estimate for the
expected number of balls Bj touched by large clusters on both sides:∑

j

P+(Bj )P−(Bj ) ≈ ∑
j

r
(a++a−)/3
j .

Here the right-hand side is small (large) when (a+ +a−)/3 is bigger (smaller) than
dim(E), since

∑
j r

dim(E)
j ≈ 1. We conclude that the expected number of points

touched by large clusters on both sides is positive if and only if we can find E such
that (a+ + a−)/3 < dim(E).

REMARK 1.12 (Sharpness of the finite intersection property). It seems that
positive probability of having a crossing intersecting α a finite number of times is
roughly equivalent to the existence of positive exponents a+ and a− such that the
two-sided multifractal spectrum of harmonic measure on α satisfies 3f (a+, a−) >

a+ + a−; see [2] for a discussion of such spectra. The latter property seems to fail
even for some nonsmooth α of dimension close to one, so we do not expect the
factorization property to be equivalent to the finite intersection property, but rather
to be a weaker one.
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Before proving the main theorem, we discuss a new framework for the percola-
tion scaling limit and show that collection of discrete random colorings is precom-
pact, so in this framework the subsequential scaling limits exist for any random
model.

Recall that we work with HD , which is the collection of all closed lower (i.e.,
monotonicity of the crossing events is obeyed) subsets of QD , which one should
think of as sets of quads crossed. The topology TD is the minimal one containing
all sets VU (of S such that some quads in U are crossed) and V Q (of S such that
Q is not crossed).

We now list some important properties of HD .

THEOREM 1.13 (The space of percolation configurations). Let D ⊂ Ĉ be
topologically open and nonempty.

(1) (HD, TD) is a compact metrizable Hausdorff space.
(2) Let A be a dense subset of QD . If S1, S2 ∈ HD satisfy S1 ∩ A = S2 ∩ A,

then S1 = S2. Moreover, the σ -field generated by V Q, Q ∈ A is the Borel σ -field
of (HD, TD).

(3) If S1, S2, . . . is a sequence in HD and S ∈ HD , then Sj → S in TD is equiv-
alent to S = lim supj Sj = lim infj Sj .

(4) Let D′ ⊂ D be a subdomain, and for S ∈ HD let S′ := S ∩ QD′ . Then
S �→ S′ is a continuous map from HD to HD′ .

In the above, lim infj Sj is the set of Q ∈ QD such that every neighborhood of Q

intersects all but finitely many of the sets Sj , and lim supj Sj is the set of Q ∈ QD

such that every neighborhood of Q intersects infinitely many of the sets Sj .

REMARK 1.14 (Applicability of Theorem 1.13). The result concerns the topo-
logical properties of the space of percolation configurations (colorings of tilings)
and involves no probability measures. Thus, it can be applied to any random color-
ing of a trivalent tiling (into open and closed tiles), yielding results for dependent
models, like the Fortuin–Kasteleyn percolation.

It follows from the theorem above that the space of continuous functions on
(HD, TD) is separable, and hence the unit ball in its dual space M(HD) of Borel
measures is compact (by the Banach–Alaoglu theorem, Theorem 3.15 in [31]),
metrizable (by Theorem 3.16 in [31]) and obviously Hausdorff in the weak-∗
topology. The space of probability measures being a closed convex subset of the
unit ball, we arrive at the following.

COROLLARY 1.15 (The space of percolation measures). The space Prob(HD)

of Borel probability measures on (HD, TD) with weak-∗ topology is a compact
metrizable Hausdorff space.
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Discrete percolation measures μη clearly belong to Prob(HD) and hence the
existence of percolation subsequential scaling limits (or, more generally, for any
random colorings) is an immediate corollary:

COROLLARY 1.16 (Precompactness). The collection of all discrete measures
{μη} (corresponding to random colorings of trivalent tilings) is precompact in the
topology of weak-∗ convergence on Prob(HD).

REMARK 1.17 (Nets vs. sequences). We can make {η} a directed set by writ-
ing η1 � η2 whenever |η1| ≥ |η2|. Then the scaling limit lim|η|→0 μη is just the
limit of the net μη. Since the target space Prob(HD) is metrizable and hence first-
countable, it is enough to work with the notion of convergence along sequences,
rather than nets. In particular, if limj→∞ μηj

= μ0 for every sequence ηj with
limj→∞ |ηj | = 0, then lim|η|→0 μη = μ0.

REMARK 1.18. Our construction keeps information about all macroscopic
percolation events, and so gives the full percolation scaling limit at or near critical-
ity. For the critical site percolation on triangular lattice, Garban, Pete and Schramm
explain in Section 2 of [14] that the scaling limit is unique, appealing to the work
[7] of Camia and Newman. Basically, we know the probabilities of individual
crossing events, and it allows to reconstruct the whole picture, albeit in a diffi-
cult way. It would be interesting to establish the uniqueness using an appropriate
modification of Proposition 4.1.

So that our theorems apply even to models where the uniqueness of the scaling
limit has not been proved yet, we work with one of the subsequential limits μ0—
a Borel probability measure on HC, provided by Corollary 1.16. By Theorem 1.13,
the Borel σ -field of HD is σ(�Q :Q ∈ QD), that is, generated by the crossing
events inside D. Let FD := σ(�Q :Q ∈ QD) also denote the corresponding sub-
field of the Borel σ -field of HC.

THEOREM 1.19 (Factorization). Consider a collection of percolation models,
satisfying Assumptions 1.1. Let D be a domain, and let α ⊂ C be a finite union
of finite length paths with finitely many double points. Denote the components of
D \ α by Dj . Then for any subsequential scaling limit

FD = FD\α = ∨
j

FDj
,(1.4)

up to sets of measure zero.

Again, we note that this does not hold when α is a sufficiently wild path.
Fix a subsequential scaling limit of the critical percolation for the bond model

on the square lattice or for the site model on the triangular lattice. By the results
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above for a domain D, it is described by a probability space (HD, FD,μD), which
is invariant under translations of the plane (in fact, under all conformal transfor-
mations, but it is so far established for the triangular lattice only), depends con-
tinuously on D and satisfies (1.4). Then in the language of Tsirelson (see [38],
Definition 3d1) it is a noise or a homogeneous continuous product of probability
spaces with a Boolean base given by an appropriate algebra of piecewise-smooth
planar domains (e.g., generated by rectangles).

There is a well developed and beautiful theory of noises, and we refer the reader
to two expositions [38, 39] by Tsirelson. In particular, every noise can be decom-
posed into a “classical,” or “stable” part and a “nonclassical,” or “sensitive” part.
White noise is purely classical, and purely nonclassical noises are called “black”
by Tsirelson. The black noises are difficult to construct, with the first example
given by Tsirelson and Vershik in [41]. As pointed out by Tsirelson in [40] and
in Remark 8a2 of [39], percolation noise has to be nonclassical, and so our paper
provides the first genuinely two-dimensional example of a black noise.

COROLLARY 1.20 (Percolation is a noise). Thus, we conclude that, in the
language of Tsirelson [38], any subsequential scaling limit as above is a noise
with a Boolean base given by an appropriate algebra of piecewise-smooth planar
domains (e.g., generated by rectangles). Therefore, it has to be a black noise, as
explained in [39], Remark 8a2.

By the conjectured universality, all the critical percolation models should have
the same scaling limit and so correspond to the same black noise. The situation
with near-critical noises is less clear, so the following question was proposed by
Christophe Garban (the answer is expected to be negative):

QUESTION 1.21. Are the noises arising from the critical and near-critical
models isomorphic, or do we get a family of different noises?

The notion of isomorphism for noises is discussed by Tsirelson in Section 4a
of [38]. Roughly speaking, we ask whether one can get a near-critical noise from
the critical one by a local deterministic procedure? Note that the current construc-
tion of the near-critical percolation scaling limit would use the critical percolation
along with some extra randomness, as in [6, 12].

Our construction of the scaling limit applies to general random colorings, and
much of what we do afterwards mostly uses “arms estimates,” which are known
for a wider class of models, than just percolation. Therefore, it is logical to ask:

QUESTION 1.22. To what extent out results apply to the models with de-
pendence? One has to be more careful in formulating the results, since now the
configuration inside a domain depends on the boundary conditions, but this can be
addressed by working with a full-plane model and stripe domains.
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2. The discrete gluing theorem. In this section, we prove Theorem 1.5.
Applying several times in succession Lemma A.1, we can find a smooth (i.e.,

given by a diffeomorphism) quad Q, such that the crossing events for Q0 and Q

are arbitrarily close. By the same lemma, as ε → 0, the crossing event for Q is
well approximated by the crossing event of its perturbation Qε := Q([ε,1 − ε]2).
On the other hand, α has finite length and so for almost every ε the intersection
α ∩ ∂Qε is finite. This can be deduced, for example, from the area theorem in the
geometric measure theory [10, 27], which implies that an orthogonal projection of
a rectifiable curve on a given line covers almost every point at most finitely many
times.

Thus, approximating if necessary, we can assume that α intersects ∂Q0 at
finitely many points xi , i = 1, . . . , k. Fix ε0 > 0, then by the RSW estimate (1.2),
there is an r > 0 such that, if 0 < |η| < r , then the probability under μη that there is
a crossing of Q0 which intersects any of the disks B(xi, r) is less than ε0. Fix such
an r , remove from the curve α the disks, the rest will be away from the boundary,
simplifying future estimates:

α′ := α
∖ ⋃

i

B(xi, r)

and

d := inf{|x − y| :x ∈ α′, y ∈ ∂Q0} > 0.

Fix s ∈ (0, d/4). By the regularity assumption, we can choose n ≤ C(α)/s balls
of radius s, entirely covering α. Denote their centers by w1,w2, . . . ,wn, and set
Bj := B(wj ,2s); see Figure 5.

Let M denote the union of the set of tiles of Hη that intersect the s-neighborhood
of α′ minus

⋃
i B(xi, r). Assume |η| < s, so that M would be contained in the

2s-neighborhood of α′. Let ω and ω′ be samples from μη that agree on the com-

FIG. 5. Setup for the proof of the discrete gluing theorem in the simplest case.
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FIG. 6. If resampling a part of the ball Bj changes the crossing event, than there are two open
crossings from Bj to ∂0Q0 and ∂2Q0, and two dual closed crossings from Bj to ∂0Q0 and ∂2Q0,
a four arm event.

plement of M and are independent in M . For j = 0,1, . . . , n, let ωj be the config-
uration that agrees with ω′ on the tiles of Hη lying inside B1 ∪ B2 ∪ · · · ∪ Bj and
agrees with ω elsewhere. Then each ωj is a fair sample from μη. Also observe that
ω0 = ω and ωn differs from ω′ only inside

⋃
i B(xi, r).

Our goal is to estimate

P[ω ∈ �Q0,ω
′ /∈ �Q0],

which we will do by successively comparing ωj−1 to ωj . Fix j ∈ {1,2, . . . , n}. In
order for {ωj−1 ∈ �Q0} ∩ {ωj /∈ �Q0} to hold, there must be a crossing in ωj−1
from ∂0Q0 to ∂2Q0 that goes through Bj and there must be a dual closed crossing
in ωj from ∂1Q0 to ∂3Q0 that goes through Bj ; see Figure 6. Thus, in ωj we have
the four arm event from ∂Bj to ∂Q0. Since the radius of Bj is 2s and the distance
from Bj to ∂Q0 is at least d − 2s > d/2, by assumption (1.3) we have

P[ωj−1 ∈ �Q0,ωj /∈ �Q0] ≤ P 4
η (z,2s, d/2) <

(
2s

d/2

)
· �4(2s, d/2).

Summing over j , we conclude that

P[ω0 ∈ �Q0,ωn /∈ �Q0] ≤
n∑

j=1

P[ωj−1 ∈ �Q0,ωj /∈ �Q0]

≤ n ·
(

2s

d/2

)
· �4(2s, d/2)

≤ C(α)

s
· 4s

d
· �4(2s, d/2)

≤ 4C(α)

d
· �4(2s, d/2).
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By Assumption 1.1 the right-hand side tends to 0 with s, and so we can make sure
that P[ω0 ∈ �Q0,ωn /∈ �Q0] < ε0 by choosing s sufficiently small. This is the only
place in the paper, where we use the pivotal estimate (1.3).

Now, recall that ω0 = ω, and ωn differs from ω′ only near endpoints of curves
in α, that is, inside

⋃
i B(xi, r). By our choice of r , we have the estimate P[ωn ∈

�Q0,ω
′ /∈ �Q0] < ε0. Summing the above, we get the bound

P[ω ∈ �Q0,ω
′ /∈ �Q0] < 2ε0.

Now note that by first conditioning on Fs and then using the fact that ω and ω′ are
conditionally independent given Fs , we obtain

2ε0 > P[ω ∈ �Q0,ω
′ /∈ �Q0] = E

[
μη(�Q0 | Fs)

(
1 − μη(�Q0 | Fs)

)]
.

In particular, by Chebyshev inequality,

μη

(
ε < μη(�Q0 | Fs) < 1 − ε

)
< 2ε0/

(
ε(1 − ε)

)
.

Since ε0 was an arbitrary positive number, this completes the proof.

3. The space of lower sets. The main goal of this section is to provide an
abstract setup for the percolation scaling limit and to prove Theorem 1.13. We
discuss topology on the space HX of closed lower subsets of an abstract partially
ordered topological space X. In the percolation case, X corresponds to the space
QD of quads, and the space (HX, T H) to the space (HD, TD) of percolation con-
figurations in a domain D ⊂ C.

With these conventions, Theorem 1.13 directly follows from Theorem 3.10 be-
low. The latter applies to the space of percolation configurations (colorings of
tilings), since QD is clearly second-countable, (3.1) holds by definition and (3.2)
holds since a quad Q0 can be easily approximated by smaller quads [e.g., by quads
Qq with q = (−ε, ε,1 + ε,1 − ε) from the proof of Lemma 5.1].

We now start the (mostly classical) abstract construction, inspired by the
Dedekind’s sections. Let (X, τ) be a topological space, let FX denote the col-
lection of topologically closed subsets of X. For a topologically open U ⊂ X and
a compact K ⊂ X, let

WU := {F ∈ FX :F ∩ U �= ∅},
WK := {F ∈ FX :F ∩ K = ∅}.

Let T̂ be the topology on FX generated by all such sets WK and WU . It is a more
convenient version of the Vietoris topology, called Fell topology or topology of
closed convergence.

The following result is Lemma 1 in [11].

PROPOSITION 3.1. (FX, T̂ ) is compact.
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For completness, we include a short proof, based on Alexander’s subbase the-
orem (see, e.g., Theorem 5.6 in [17]), which states that if B is a subbase for the
topology on a space X and every cover of X by elements of B contains a finite
subcover, then X is compact.

PROOF OF PROPOSITION 3.1. By Alexander’s subbase theorem, it suffices
to show that every cover of FX by sets of the form WU (where U ∈ τ ) and WK

(where K ⊂ X is compact) has a finite subcover. Let

{WU :U ∈ I } ∪ {WK :K ∈ J } ⊃ FX

be such a cover. Observe that
⋃

U∈I WU = W
Ũ

, where Ũ = ⋃
U∈I U . Let F :=

X \ Ũ , and note that F is topologically closed. Since F ∈ FX ⊂ W
Ũ

∪ ⋃
K∈J WK ,

we know that F ∈ ⋃
K∈J WK , namely, there is some K0 ∈ J with F ∈ WK0 . In

other words, F ∩ K0 = ∅; that is, K0 ⊂ Ũ . Since K0 is compact and {U :U ∈ I }
covers K0, there is some finite I ′ ⊂ I such that {U :U ∈ I ′} covers K0. Then
{WU :U ∈ I ′} ∪ {WK0} is a finite cover of FX . �

Now suppose that “<” denotes a partial order on X such that

R := {(x, y) ∈ X2 :x < y} is a topologically open subset of X2.(3.1)

Define Rx := {y ∈ X :y < x} and Rx := {y ∈ X :x < y}. Then for every x ∈ X

these sets are topologically open. A set H ⊂ X is said to be lower if x ∈ H implies
Rx ⊂ H . Let HX denote the collection of all topologically closed lower sets.

PROPOSITION 3.2. Assuming (3.1), HX ⊂ FX is closed with respect to the
topology T̂ ; that is, FX \ HX ∈ T̂ .

PROOF. Set Ux := W {x} ∩ WRx and

U := ⋃
x∈X

Ux = {F :∃x, y with x < y,y ∈ F,x /∈ F }.

Then U is topologically open and HX = FX \ U . �

Let T H be the topology of HX as a subspace of FX . It is the topology generated
by the sets VU := WU ∩ HX and V K := WK ∩ HX , for topologically open U

and compact K subsets of X. As we will later see, in our setting it is sufficient
to restrict ourselves to one-point compact sets, working with V {x}, which we will
often abbreviate V x .

For simplicity, we will also abbreviate H := HX and T := T H. Propositions 3.1
and 3.2 imply that (H, T ) is compact.

In general, H does not have to be a Hausdorff space, even if X is Hausdorff.
Indeed, the sufficient condition would be for X to be Hausdorff and compact, but
for the application we have in mind, X is not compact. However, the following
result gives another sufficient condition for H to be Hausdorff.
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PROPOSITION 3.3. Suppose, in addition to (3.1), that

∀x ∈ X x ∈ Rx.(3.2)

Then (H, T ) is a Hausdorff space.

PROOF. Let H1,H2 ∈ H be different, then one of the two differences H1 \
H2 and H2 \ H1 is nonempty, without loss of generality the first one. Take some
x ∈ H1 \ H2. Since X \ H2 is topologically open in X and contains x ∈ Rx , we
can find some y ∈ Rx ∩ (X \ H2) = Rx \ H2. Then VRy is disjoint from V y .
Moreover, H1 ∈ VRy and H2 ∈ V y . So there are disjoint topologically open sets in
T containing H1 and H2, respectively, and the space is Hausdorff. �

REMARK 3.4. Let T ′ be the topology on FX generated by the sets WU ,
U ∈ TX and W {x}, x ∈ X. Since this topology is coarser than T̂ , Proposition 3.1
implies that (FX, T ′) is compact. The proof of Proposition 3.2 shows that H is
a topologically closed subset of FX , also with respect to T ′. Moreover, assum-
ing (3.2), the proof of Proposition 3.3 shows that H is Hausdorff with respect
to T ′. It is well known (and not hard to verify; see Theorem 5.8 in [17]) that if a
compact topology on a space is finer than a Hausdorff topology on the same space,
then they must be equal. We conclude that the topology on H induced by T̂ is the
same as that induced by T ′ whenever (3.2) and (3.1) hold.

LEMMA 3.5. Suppose that (3.1) and (3.2) hold, and that X0 is a dense subset
of X. If H1,H2 ∈ H and H1 �= H2, then H1 ∩ X0 �= H2 ∩ X0.

PROOF. Take x ∈ H1 \ H2, if the latter is nonempty. Then (3.2) implies that
Rx \H2 �= ∅. Since X0 is dense and Rx \H2 is topologically open and nonempty,
we have X0 ∩ Rx \ H2 �= ∅. Because Rx ⊂ H1, this implies that H1 ∩ X0 �= H2 ∩
X0. A symmetric argument applies if H2 \ H1 �= ∅. �

In the next lemma, we characterize convergence of nets in HX . As we shall see,
(HX, T H) is first countable, thus convergence of sequences actually leads to the
same properties, but we decided to work with the more general notion for now,
since it does not lead to additional difficulties.

Suppose that D is a directed set (i.e., partially ordered by “�” so that every
two elements have a common upper bound), and {Yn}n∈D is a net (i.e., a sequence
indexed by D) of subsets of X. We write lim supn Yn for the set of all x ∈ X with
the property that for every topologically open U ⊂ X containing x and for every
m ∈ D there is some n � m in D satisfying Yn ∩ U �= ∅. Similarly, lim infn Yn is
the set of all x ∈ X with the property that for every topologically open U ⊂ X

containing x there is some m ∈ D such that Yn ∩U �= ∅ for every n � m. We write
Y = limn Yn if Y = lim supn Yn = lim infn Yn.
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LEMMA 3.6. Assume that (3.1) and (3.2) hold, and that Sn, n ∈ D, is a net
with Sn ∈ H for every n.

(1) If limn Sn ⊂ X exists, then limn Sn ∈ H.
(2) If the net Sn converges to S with respect to T , then S = limn Sn.
(3) Conversely, if S = limn Sn, then the net Sn converges to S with respect to T .

PROOF. To prove (1), suppose that S = limn Sn, x ∈ S and y < x. Then
x ∈ Ry . Therefore, there is some m ∈ D such that Sn ∩ Ry �= ∅ for every n � m.
Since Sn ∈ H, this implies that y ∈ Sn for every n � m. Thus, y ∈ S, which proves
that S is a lower set. The definition of limn Sn makes it clear that S is topologically
closed. This proves (1).

To prove (2), suppose that Sn converges to S with respect to T . Let x ∈ S.
If U ⊂ X is topologically open and contains x, then S ∈ VU . Therefore, there is
some m ∈ D such that Sn ∈ VU for every n � m. But Sn ∈ VU is equivalent to
Sn ∩ U �= ∅. Therefore, x ∈ lim infn Sn; that is, S ⊂ lim infn Sn. Now suppose that
y /∈ S. By (3.2) there is some z ∈ Ry \ S. Then S ∈ V z. Consequently, there is
some m ∈ D such that Sn ∈ V z for all n � m. Hence, Sn ∩ Rz = ∅ for all n � m.
Since y ∈ Rz and Rz is topologically open, this implies that y /∈ lim supn Sn. Thus,
S ⊃ lim supn Sn. Summing it up, we have lim infn Sn ⊃ S ⊃ lim supn Sn. Since
lim infn Sn ⊂ lim supn Sn, this proves (2).

To prove (3), suppose that S = limn Sn. Then we know from (1) that S ∈ H.
Suppose that Snj

is a subnet of Sn that converges to some S′ ∈ H. By (2), we have
S′ = limj Snj

. Therefore, S′ = S. Thus, every convergent subnet of Sn converges
to S. Since H is compact, this proves that Sn converges to S, and completes the
proof of the lemma. �

LEMMA 3.7. Assuming (3.1) and (3.2), if X is second-countable (i.e., with a
countable base), then H is second-countable and hence metrizable.

PROOF. Assume that X is second-countable. In particular, there is a count-
able dense set X0 ⊂ X. Let B be a countable basis for TX . We claim that
B′ := {VU :U ∈ B} ∪ {V x :x ∈ X0} is a subbase for T .

Indeed, if U ′ ∈ TX , then there is a subset J ⊂ B such that U ′ = ⋃
U∈J U . Then

VU ′ = ⋃
U∈J VU ; thus, VU ′ is in the minimal topology containing B′.

Now suppose that x ∈ X, then

V x = ⋃
y∈X0∩Rx

V y.(3.3)

Indeed, if S ∈ V x , then x /∈ S and by (3.2) the topologically open set Rx \ S

is nonempty. Take some y ∈ X0 ∩ Rx \ S, then S ∈ V y . This proves that V x ⊂
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⋃
y∈X0∩Rx V y . Since y < x, we also have V y ⊂ V x for y ∈ Rx , concluding that

V x = ⋃
y∈X0∩Rx V y . Thus, V x is also in the minimal topology containing B′.

Now Remark 3.4 shows that B′ is a subbase for T . Since B′ is countable, T also
has a countable basis (of all finite intersections of elements of B′).

By Proposition 3.3, topology T is Hausdorff. Since a second-countable compact
Hausdorff space is metrizable (which follows from Urysohn’s Theorem 4.16 in
[17]), this completes the proof. �

LEMMA 3.8. Suppose that (3.1) and (3.2) hold, and that X0 is a dense subset
of X. Then the Borel σ -field of (H, T ) is generated by V y, y ∈ X0.

PROOF. Observe that the Borel σ -field of (H, T ) is generated by topologically
open sets, which in turn are generated by the sets of the form VU and V x for
topologically open U ⊂ X and x ∈ X. So we must prove that those can be obtained
from V y, y ∈ X0, by the operations of countable union, intersection and taking
complements.

For x ∈ X, the set V x can be obtained as V x = ⋃
y∈X0∩Rx V y , by (3.3).

For a topologically open U ⊂ X, note that by the definitions VU = ⋃
x∈U ¬V x .

Therefore, VU ⊃ ⋃
y∈U∩X0

¬V y . On the other hand, take x ∈ U . By (3.2) we can
find y ∈ X0 inside the topologically open set U ∩ Rx , then y < x and ¬V x ⊂ ¬V y .
Thus VU ⊂ ⋃

y∈U∩X0
¬V y . We conclude that VU = ⋃

y∈U∩X0
¬V y , and so the sets

VU can also be obtained. �

Finally, observe that a topologically open X′ ⊂ X inherits the properties (3.1)
and (3.2) from X, and the following continuity under inclusions holds.

LEMMA 3.9. Let X′ ⊂ X be topologically open, and for S ∈ HX let �(S) :=
S ∩ X′. Then � is a continuous map from HX to HX′ .

PROOF. We have to check that preimages of topologically open sets are also
topologically open. This follows easily since a topologically open subset U ⊂ X′
is topologically open inside X and �−1(V U) = V U , while for x ∈ X′ we have
�−1(V x) = V x . �

Summing it up, we arrive at the following.

THEOREM 3.10. Let (X, τ) be a partially ordered second-countable topolog-
ical space, such that the ordering satisfies (3.1) and (3.2). Then:

(1) (HX, T H) is a compact metrizable Hausdorff space.
(2) Let X0 be a dense subset of X. If S1, S2 ∈ HX satisfy S1 ∩ X0 = S2 ∩ X0,

then S1 = S2. Moreover, the σ -field generated by V y , y ∈ X0, is the Borel σ -field
of (HX, T H).
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(3) If {Sn} is a sequence in HX and S ∈ HX , then Sn → S in T H is equivalent
to S = lim supn Sn = lim infn Sn.

(4) Let X′ ⊂ X be a topologically open subset, and for S ∈ HX let �(S) :=
S ∩ X′. Then � is a continuous map from HX to HX′ .

PROOF. Part 1 follows from Propositions 3.1, 3.2 and Lemma 3.7; part (2)
follows from Lemmas 3.5 and 3.8; part (3) follows from Lemma 3.6; and part (4)
follows from Lemma 3.9. �

4. Uniformity in the mesh size. In this section, we prove a mesh-independent
version of the gluing theorem.

PROPOSITION 4.1 (Mesh-independent gluing). Let D ⊂ C be some domain,
and let Q0 ∈ QD be a piecewise smooth quad in D. Suppose that α ⊂ C is a
finite union of finite length paths, with finitely many double points. Consider a
collection of percolation models indexed by a set {η}. Assume that μη converges
to (a subsequential) scaling limit μ0 as mesh |η| → 0. Then for every ε > 0 there
is a finite set of piecewise smooth quads Qε ⊂ QD\α and a subset Wε ⊂ H, which
is measurable with respect to the finite σ -field σ(�Q :Q ∈ Qε), such that

lim|η|→0
μη(Wε��Q0) < ε.(4.1)

PROOF. This is the most technically difficult part of our paper. The rough
plan is as follows: we set up a thin strip around α, and cut it into “bays,” forming
a neighborhood of α, and a part away from α, bounded by “beaches.” Partition de-
pends on the percolation configuration, and has the properties that (i) percolation
in the neighborhood of α is decoupled from the rest, and (ii) the crossings outside
this neighborhood can be encoded by a finite information, stable under small per-
turbations of the percolation configuration. We use a complicated construction of
the neighborhood for the sake of the property (ii). To effectively bound the needed
crossing information away from α (whose amount grows as we pass to the scal-
ing limit), we further coarse-grain this procedure to a fixed small scale, when it is
described by a finite σ -field. This will allow to write the required estimates.

We now start the proof by fixing a countable subsequence {ηj } from our set,
such that |ηj | → 0 (and μηj

converges to μ0). Recall that by Remark 1.17 in our
setting it is sufficient to work with sequences, rather than nets.

Setup for the neighborhood of α. Reasoning like in the proof of Theorem 1.5
(the first paragraph of Section 2), we can approximate the quad Q0, by quads
whose boundaries intersect α on a finite set. Thus, we can assume that α has
finitely many double points, intersects ∂Q0 on a finite set. Prolonging some of
the curves in α if necessary (to cut the non-simply-connected components into
smaller pieces), we can further assume that each component of [Q0] \ α is simply
connected.



ON THE SCALING LIMITS OF PLANAR PERCOLATION 1795

Fix small ε0 > 0. Define two random variables: one given by the indicator func-
tion of the crossing event Y0 := 1�Q0

; and another by the conditional probability
of a crossing, given the percolation configuration s-away from α:

Ys := μη(�Q0 | Fs).

Here Fs , s > 0, denotes the σ -field generated by the restriction of ω to the com-
plement of the s-neighborhood of α, as in Theorem 1.5. By that theorem, for all
sufficiently small s > 0,

sup
|η|∈(0,s)

μη(ε0 < Ys < 1 − ε0) < ε0.(4.2)

Denote by xi , i = 1, . . . , n, the finitely many points where α intersects ∂Q0, as
well as the endpoints and the double points of curves in α. Let d be the minimum
over i of the distances from xi to other xj ’s and the farthest of ∂0Q0 and ∂2Q0. We
now fix s > 0 sufficiently small so that (4.2) holds, and sufficiently small so that
for i = 1, . . . , n, the balls B(xi,2s) are disjoint, and

sup
|η|∈(0,s)

μη

(∃ a crossing from B(xi,2s) to ∂B(xi, d/3)
)
< ε0/n.(4.3)

The latter follows for small s from the RSW estimate (1.2). We also require that
the intersection of α with

⋃
i ∂B(xi, s) is finite (which holds for almost every value

of s, since the total length of α is finite).
For the following construction, the reader is advised to refer to Figure 7. Let β

and β ′ be finite unions of disjoint smooth simple paths in [Q0] \ ⋃
i B(xi, s), and

FIG. 7. Curves in α are between β ′ which are in turn between β . We modify configuration on the
small discs so that long quads bounded by β and β ′ on long sides, have open tiles on one short side
and closed on another.



1796 O. SCHRAMM AND S. SMIRNOV

let K be the closure of the union of connected components of

[Q0]
∖ (⋃

i

B(xi, s) ∪ β ∪ β ′
)
,

whose boundary intersects both β and β ′. We can choose these unions of paths so
that:

• all their endpoints belong to
⋃

i ∂B(xi, s),
• β ′ separates β from α,
• the connected component of [Q0] \ β that contains α is contained in the (s/2)-

neighborhood of α,
• each component of connectivity Kj of K is a quad with two “long” sides on β

and β ′ and two “short” sides on two of the circles ∂B(xi, s).

It is immediate to verify that there exist such unions of paths.

Bays and beaches. The following construction is illustrated in Figure 8. Let
ω be a sample from μη for some small η > 0. For somewhat technical reasons, it
will be convenient to consider in place of ω the configuration ω̃ which is modified
on the tiles intersecting disks B(xj , s). We alter ω so that for every component Ki

one of two short sides is covered by open tiles and another by closed. Clearly, (4.3)
implies that if η < s,

μη({ω ∈ �Q0}�{ω̃ ∈ �Q0}) ≤ ε0.(4.4)

For this reason, studying ω̃ will still be useful.
In what follows, we start on the curve β and explore all the potential crossings of

the strip between β and β ′. To be more precise, denote by ∂ω̃ the set of percolation
interfaces–curves, separating open tiles in ω̃ from the closed ones. Let I be the set
of connected components of the intersection of ∂ω̃ with the interior of K (i.e.,
percolation interface in the interior of K), and let Ĩ denote the set of elements of

FIG. 8. Interfaces between open and closed clusters, starting from β , cut the strips Ki into com-
ponents. Bays are the components touching β ′, and are alternatively open and closed. Beaches are
the inner boundaries of the bays, when entered through β ′.
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I that have at least one endpoint on β . The definition of ω̃ guarantees that in each
component Ki there is at least one interface of ω̃ with one endpoint on β and the
other on β ′.

Let � denote the union of the elements of Ĩ ; that is, � = ⋃
Ĩ = ⋃

γ∈Ĩ
γ . Each

connected component of K \ � which meets β ′ will be called a bay. Clearly, each
point in β ′ is in the closure of some bay, and for each bay its intersection with β ′
is connected. Let B be some bay. The union of the tiles of Hη that intersect B as
well as ∂B \ β ′ will be called the beach of B . It is easy to see that the beach is
connected, and all the tiles in the beach are either open (i.e., in ω̃) or closed (not
in ω̃). If they are all open (resp., closed), then B itself will be referred to as an open
(resp., closed) bay.

Let M ′ = M ′(ω) be the union of the component of [Q0] \ β ′ containing α,
and of all the bays without beaches. Denote by M = M(ω) the complement in
[Q0] of M ′, as well as the corresponding set of tiles. The following property of
M is essential: given M and the restriction of ω to it, the conditional law of the
restriction of ω to M ′ (i.e., the complement of M) is unbiased. In other words, if we
take ω1 independent from ω and of the same law, and we define ω2 to agree with
ω on M and to agree with ω1 elsewhere, then ω2 also has the law μη. This follows
directly from the fact that M(ω2) = M(ω). Below we will denote the restriction of
a percolation configuration ω to M by ω�M .

Fix some small s ′ ∈ (0, s), and let S = Ss′ denote the event that there is a small
bay B , that is, with diam(B ∩β ′) < s′. Observe that for every bay B the endpoints
of B ∩ β ′ are endpoints of interfaces of ω which meet both β and β ′. Thus, three
crossings of K (which are alternating, e.g., closed, open and closed) land on the
arc B ∩ β ′ and Lemma A.2 applied to all components of K implies that

lim
s′→0

sup
|η|∈(0,s′)

μη(S) = 0.

By choosing s ′ sufficiently small, we therefore assume, with no loss of generality,
that μη(S) < ε0 holds for every η ∈ (0, s′) and that s′ < s. Observe that on ¬S the
number of bays is bounded by a constant depending only on s ′, β,β ′ and Q0.

We will find the structure of the bays to be a convenient component in the esti-
mation of the conditional probability (given the bays and some additional informa-
tion) of ω̃ ∈ �Q0 . However, as |η| → 0, the number of possible bay configurations
increases without bound, and therefore their structure cannot be completely cap-
tured by a finite σ -field. For this purpose, we need to introduce a discretization,
and any sort of coarse-graining, for example, by the square lattice, would do.

Discretization to a finite σ -field by coarse-graining. We need some tessella-
tion of K , and the following one is somewhat ad hoc, but suitable. Let δ ∈ (0, s′)
be small, to be chosen later. Fix some finite set of points W ⊂ K such that the
distance between any two points in W is at least δ/4 and every point in K is within
distance δ/2 of some point in W . Let T be the collection of Voronoi tiles in K with
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respect to W ; that is, each Tw , w ∈ W , is the set of points x ∈ K whose distance to
W is equal to |x − w|. Then the diameters of the tiles in the tessellation T are all
less than δ (but the lattice Hη tiles are still much smaller). Let T̂ denote the tessel-
lation obtained by adjoining to T the closures of the (finite in number) connected
components of [Q0] \ K that do not contain α. We think of tessellations T and
T̂ as cell complexes. The vertices of T are defined as the vertices of the Voronoi
tiles together with the points in (β ∪ β ′) ∩ ∂Q0. The vertices of T̂ are defined as
those of T plus the four corners of Q0. Note that some of the edges of T̂ are not
necessarily straight. Denote by [T̂ ] the union of the tiles in T̂ .

We say that a quad Q ∈ QD is compatible with T̂ if [Q] is a union of tiles
of T̂ and each of its four corners Q(0,0), Q(0,1), Q(1,0), Q(1,1) is a vertex
of T̂ . Since T̂ is finite, it is clear that up to reparameterization preserving corners
there are only finitely many compatible Q. Let Q

T̂
denote a set of representatives

of equivalence classes of compatible quads up to reparameterization preserving
corners. Then Q

T̂
is a finite collection of piecewise smooth quads in D \ α. Let

FT denote the σ -field generated by the events �Q, Q ∈ Q
T̂

.
Without loss of generality, we assume that along our chosen sequence {ηj }, for

each edge e of the tessellation T that does not touch ∂Q0:

• each edge of Hη intersects the tessellation edge e in at most finitely many points,
• the tessellation edge e does not contain any vertices of Hη,
• the endpoints of the tessellation edge e are not on edges of Hη.

There is no loss of generality in this assumption, because we may slightly perturb
β , β ′ and T (and we do not even need T to be a Voronoi tessellation).

Let B be some bay. Define T (B) to be its T -discretization, namely the union of
all edges of T inside B ∩ β ′ and all tiles of T inside B , which can be connected to
β ′ by a path of tiles of T also contained inside B . By construction, each point in
∂T (B) is within distance δ from ∂B . Note that there is a finite number of possibil-
ities for the choices of T (B), and also observe that whenever S does not hold, all
T -discretizations are nonempty and so T (B) = T (B ′) implies B = B ′.

Connectivity in the coarse-grained model. The next objective is to show that
on the complement of S the collections of discretized bays

Zo := {T (B) :B an open bay}
and

Zc := {T (B) :B a closed bay}
can be determined from FT . That is, there are FT -measurable random variables
Z′

o and Z′
c such that Zo = Z′

o and Zc = Z′
c on the complement of S. Here and in

the following, we ignore events that have zero μη-measure for each η ∈ {ηj }.
Note that on the event ¬S the cardinality of Zo and Zc is bounded by a constant

depending on Q0, β ′ and s′ only.
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Let e be an edge of T that lies on the component β ′
j = β ′ ∩Kj , denote also βj :=

β ∩Kj . Let Qe and Q′
e be the quads in Q

T̂
that satisfy ∂0Qe = ∂1Q

′
e = e, ∂2Qe =

∂3Q
′
e = βj and [Qe] = [Q′

e] = Kj . Then the event that there is an interface γ ∈ Ĩ

that meets e is the same as the event �Qe \ �Q′
e
.

If E is the set of all edges of T on β ′
j which meet interfaces in Ĩ , then on

the event ¬S, the connected components of β ′
j \ ⋃

E are the intersections of the
elements of Zo ∪ Zc with β ′

j , and since the bays alternate in color, it follows that
the sets {τ ∩ β ′

j : τ ∈ Zo} and {τ ∩ β ′
j : τ ∈ Zc} can each be determined from FT ,

up to an event contained in S.
Next, suppose that γ ⊂ β ′

j is of the form τ0 ∩ β ′
j for some τ0 ∈ Zc (assum-

ing ¬S, such intersection is always nonempty). Let T0 be some tile of T . Then
T0 ⊂ τ0 if and only if there is a simple path γ ′ of edges of T with the endpoints of
γ ′ on γ such that γ ′ separates T0 from βj in Kj and there is no open crossing in
Kj ∩ ω̃ from γ ′ to βj . This, along with the dual argument, implies the existence
of Z′

o and Z′
c, as claimed.

Describing the crossing structure by a finite graph. We now introduce a graph
that describes the connectivity (by open crossings) structure of the various open
beaches and the two boundary edges ∂0Q0 and ∂2Q0.

We start by defining a random graph G which would describe the connectivity
away from α. The vertices of G are Zo ∪ {∂0Q0, ∂2Q0}, where an edge is placed
between vertices v, v′ ∈ Zo if the beaches of the corresponding bays are connected
by an open crossing in the restriction of ω̃ to M , denoted by ω̃�M ; while if v

and/or v′ are in {∂0Q0, ∂2Q0}, the connectivity to the beach is simply replaced
by the connectivity to the corresponding boundary edge itself. Note that there is a
finite number of possibilities for the choice of G.

Suppose that τ0, τ1 ∈ Zo. Let ej , j = 0,1, be an edge of T that is contained in
β ′ and has an endpoint in τj , but ej itself is not in τj . Then ej meets an interface
on the boundary of the corresponding bay. On ¬S, the two edges ej are connected
by an open crossing in ω̃�[T̂ ] if and only if [τ0, τ1] is an edge of G. Thus, on
the event ¬S the subgraph of G induced by Zo is determined from FT . A similar
argument applies also to the edges with endpoints in {∂0Q0, ∂2Q0}. Thus, on the
complement of S the graph G can be determined from FT .

Now we define a random graph G∗ so that it describes the connectivity near α.
Consider L = (∂0Q0 ∪ ∂2Q0) \ [T̂ ], which contains finitely many arcs on ∂Q0.
Denote by G∗ the graph whose vertices are Zo and the connected components of L,
where v, v′ ∈ Zo are connected by an edge in G∗ if the two corresponding beaches
of ω̃ are connected by an open crossing in ω̃�([Q0] \ M), and if v and/or v′ are
components of L, then the connectivity to the beaches is replaced by connectivity
to v and/or v′.

Clearly, ω̃ ∈ �Q0 if and only if there is a path from ∂0Q0 (or a subarc thereof) to
∂2Q2 in G ∪ G∗. Thus, on the event ¬S, the graphs G and G∗ determine whether
ω̃ ∈ �Q0 .
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Denoting by ω�M the restriction of ω to M , we set

Ỹ = Ỹ (ω) := μη(ω̃ ∈ �Q0 | ω�M).

We now show that on ¬S, the knowledge of G, Zc and Zo can be used to approx-
imate Ỹ .

Let

T (M) := [T̂ ] ∖ (⋃
Zc ∪ ⋃

Zo

)
,

that is, the complement in [T̂ ] of the union of T (B), where B runs over all the
bays.

Let G† be the graph on the same vertex set as G∗, where an edge appears
between v, v′ ∈ Zo if the common boundary of v and T (M) is connected in
ω̃�([Q0] \ T (M)) with the common boundary of v′ and T (M), while if v and/or
v′ are components of L, then the connectivity is instead to v and/or v′, but still
within ω̃�([Q0] \ T (M)). We now show that if δ is sufficiently small, η < δ and
η ∈ {ηn}, then

μη(G
† �= G∗,¬S | ω�M) < ε0.(4.5)

As we have mentioned, on the event ¬S there is a finite upper bound on the size
of Zc ∪ Zo, depending on Q0, β ′ and s′ only. Therefore, it is enough to have a
good estimate for the probability that a particular pair of vertices v and v′ of G∗
are connected by an edge in one of the two graphs but not in the other, and we are
free to impose additional conditions on δ. Connectivity of any pair of vertices is
reduced to δ-perturbations of quads of size at least s′, and so is easily obtained by
several applications of Lemma A.1 (some of them applied with the corners of the
quads appropriately permuted) proving (4.5).

Final estimates. Define Ỹ0 = Ỹ0(ω) := 1ω̃∈�Q0
and

ỸT := μη(∂0Q0 and ∂2Q0 are connected by a path in G† ∪ G | ω�M).

Then ỸT is a function of the triple (Zc,Zo,G), and is therefore FT -measurable.
By the above observation that on ¬S the event �Q0 is described by connectivity
in G ∪ G∗, we have

|ỸT − Ỹ |1¬S ≤ μη(G
† �= G∗,¬S | ω�M).

By taking expectations, applying (4.5) and recalling that s ′ was chosen to guaran-
tee μ(S) < ε0 one gets

‖ỸT − Ỹ‖2 <
√

2ε0,(4.6)

where the norm refers to the measure μη.
By (4.2) and the definition of Ys , we can write

‖Y0 − Ys‖2
2 < 2ε0 + ε2

0 < 3ε0,
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and by (4.4), we have

‖Y0 − Ỹ0‖2 <
√

ε0.(4.7)

Hence, ‖Ỹ0 − Ys‖2 <
√

3ε0 + √
ε0 < 3

√
ε0. Since Ys is Fs -measurable, it is

also ω�M-measurable. By its definition, Ỹ minimizes ‖Ỹ0 − X‖2
2 among ω�M-

measurable random variables X. Therefore, comparison to Ys (recall that the set
M includes the complement of the s-neighborhood of α) yields

‖Ỹ0 − Ỹ‖2 ≤ ‖Ỹ0 − Ys‖2 < 3
√

ε0.

Combining this with (4.6) and (4.7), we conclude that

‖Y0 − ỸT ‖2 < 6
√

ε0.

Because ỸT is FT -measurable and ε0 may be chosen arbitrarily small, this proves
that there is an FT -measurable event W (which may depend on η), such that
μη(W��Q0) < ε/2. However, since FT is finite, there are finitely many possi-
bilities for the event W , and one of those works for a sub-subsequence ηjk

. Since
we work with a (subsequential) scaling limit, the limit in (4.1) exists along the orig-
inal subsequence and is equal to μ0(W��Q0). Since along a sub-subsequence the
quantity in question is bounded by ε, so is the limit and we deduce (4.1). �

5. Factorization. In this section, we prove the Factorization Theorem 1.19.

LEMMA 5.1. Let μ0 be some subsequential scaling limit, then the boundary
(in topology T on H) of a crossing event has probability zero. Namely,

μ0(∂�Q0) = 0

holds for every Q0 ∈ QD .

PROOF. Fix Q0 ∈ QD and let ε > 0. It is easy to see (e.g., using the Riemann
map onto Ĉ \ [Q0]) that there is a continuous injective Q̂0 : [−1,2]2 → C, whose
restriction to [0,1]2 is Q0. Let M := [−1,1/3]2 × [2/3,2]2. For every quadruple
q = (x0, y0, x1, y1) ∈ M , define the quad Qq : [0,1]2 → C by

Qq(x, y) := Q̂0
(
x0 + (x1 − x0)x, y0 + (y1 − y0)y

)
.

It is a perturbation of Q0, obtained as an image of [x0, x1] × [y0, y1] by Q̂0.
Lemma A.1 implies that there is some positive δ0 > 0 (depending on Q̂0), such
that if q and q ′ are in M and differ in exactly one coordinate, and the difference
in that coordinate is at most δ0, then lim sup|η|→0 μη(�Qq ��

Qq′ ) < ε. Conse-
quently, we have

lim sup
|η|→0

μη(�Qq ��
Qq′ ) < 4ε provided ‖q − q ′‖∞ ≤ δ0.
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Set qs := (−s, s,1 + s,1 − s), Q′ := Qq−δ0/2 and Q′′ := Qqδ0/2 . Then Q′ < Q0 <

Q′′ and

lim sup
|η|→0

μη(�Q′��Q′′) < 4ε.(5.1)

Also, Q′,Q′′ ∈ QD , if δ0 is chosen sufficiently small.
Recall that V Q0 = HD \ �Q0 is open in HD . Hence �Q0 is closed. Let U ′ be

the set of quads Q ∈ QD satisfying Q0 < Q < Q′′. Then

�Q0 ⊃ VU ′ ⊃ �Q′′ .

By passing to the complements, we see that there is a closed subset (the com-
plement of VU ′) that contains V Q0 = ¬�Q0 and is contained in V Q′′

. Hence, the
closure of V Q0 is contained in V Q′′

, which gives

∂�Q0 = ∂V Q0 ⊂ V Q0 ⊂ V Q′′
.

On the other hand, let U be the set of quads Q ∈ QD satisfying Q′ < Q < Q′′,
then

∂�Q0 ⊂ �Q0 ⊂ VU .

Now observe that VU ⊂ �Q′ while V Q′′ = ¬�Q′′ . We have shown that the
open set VU ∩ V Q′′

contains ∂�Q0 . The portmanteau theorem (see, e.g., [9], The-
orem 11.1.1) therefore gives

μ0(∂�Q0) ≤ μ0(VU ∩ V Q′′
) ≤ lim inf|η|→0

μη(VU ∩ V Q′′
)

≤ lim inf|η|→0
μη(�Q′��Q′′).

Since ε was arbitrary, the result now follows from (5.1) �

COROLLARY 5.2. If M ⊂ HD is in the Boolean algebra generated by finitely
many of the events �Q, Q ∈ QD (i.e., it can be expressed using finitely many �Q

and the operations of union, intersection and taking complements), then μ0(M) =
lim|η|→0 μη(M).

PROOF. Lemma 5.1 implies that μ0(∂M) = 0. Thus, the corollary follows
from the portmanteau theorem [9], Theorem 11.1.1, and the weak convergence of
μη to μ0. �

PROOF OF THEOREM 1.19. Clearly, FD\α = ∨
j FDj

. It therefore remains to
prove the left-hand equality stated in the theorem. Note that we work up to sets of
μ0-measure zero.
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Take a smooth (given by a diffeomorphism) quad Q0 ∈ QD . By Proposition 4.1
and Corollary 5.2, we have

�Q0 ∈ FD\α.(5.2)

Since such collection of quads is dense in QD , Theorem 1.19 follows from Propo-
sition 1.13(2). �

APPENDIX A: CONTINUITY OF CROSSING EVENTS

In this section, we apply Russo–Seymour–Welsh techniques to deduce estimates
of various crossing probabilities. We start by showing that crossing events are sta-
ble under small perturbations of quads.

LEMMA A.1. There exist a positive function �c(δ, d), such that

lim
δ→0

�c(δ, d) = 0 for any fixed d,

and the following estimates hold. Let Q be a quad. Let dj , j = 0,1, be the
infimum diameter of any path in [Q] connecting ∂jQ and ∂j+2Q, and define
d := max{d0, d1}. Fix some δ < d/2. Let Q′ be another quad, satisfying at least
one of the following conditions; see Figures 9 and 10 for a graphical interpreta-
tion.

(1) [Q′] = [Q], ∂0Q
′ = ∂0Q, ∂1Q

′ = ∂1Q, and there is a path γ ⊂ [Q] of
diameter at most δ that separates {Q(1,1),Q′(1,1)} from ∂0Q ∪ ∂1Q inside [Q].

(2) [Q′] ⊂ [Q], ∂0Q
′ = ∂0Q, ∂1Q

′ ⊂ ∂1Q, ∂3Q
′ ⊂ ∂3Q, and each point on

∂2Q
′ can be connected to ∂2Q by a path α ⊂ [Q] with diam(α) ≤ δ.

(3) [Q′] ⊂ [Q], ∂0Q
′ ⊂ ∂0Q, ∂1Q

′ = ∂1Q, ∂2Q
′ ⊂ ∂2Q, and each point on

∂3Q
′ can be connected to ∂3Q by a path α ⊂ [Q] with diam(α) ≤ δ.

Then for every |η| < δ we have

μη(�Q��Q′) < �c(δ, d).

FIG. 9. Case (1): quads Q and Q′ differ by only one vertex, separated from the other vertices by
a short cut γ . Configurations with only one of two quads crossed have an open crossing from γ to
∂0Q and a dual closed crossing from γ to p1Q, making their probability small.
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FIG. 10. Case (2): side ∂2Q′ is close to the side ∂2Q. We take the lowest crossing γ of Q′, landing
at x. A dual closed crossing prevents it from landing on ∂2Q, making the probability small. Case (3)
is symmetric.

For site percolation on the triangular lattice, there is a short proof based on
Cardy’s formula. The proof below is a simple application of the RSW estimate
(1.2) and the “lowest crossing” concept.

PROOF OF LEMMA A.1. First, we deal with case (1) in the statement and
prove the estimate with �c equal to �1 from assumption (1.2). Suppose first
that d = d0. The event �Q��Q′ is contained in the event that there is a perco-
lation cluster meeting γ and ∂0Q. The latter has an open crossing of the annu-
lus A(Q(1,1), δ, d0), which by the RSW estimate (1.2) has probability at most
�1(δ, d), and we are done with case (1). If d = d1, a similar argument shows the
symmetric difference between the event of a closed crossing from ∂1Q to ∂3Q in
[Q] and the corresponding event in Q′ is bounded by �1(δ, d1). Duality shows that
the latter symmetric difference is the same as �Q��Q′ , which proves case (1).

We now deal with case (2), when clearly �Q��Q′ = �Q′ \ �Q. We start by
estimating the crossing probability for Q′. Recall our convention that �(r,R) = 1
for r ≥ R (i.e., when annulus in question is empty). Let x be some point on the
path τ of diameter d1, connecting ∂1Q to ∂3Q. Any crossing of Q′ has diameter at
least d0 − δ and passes within distance δ of τ , so in particular it crosses an annulus
A(x, d1 + δ, (d0 − δ)/2) if well defined, and by the RSW estimate (1.2) we have

μη(�Q′) ≤ �1

(
d1 + δ,

d0 − δ

2

)
.(A.1)

Next, we cut ∂2Q
′ by a point z into two parts, σ1 and σ3, so that σj cannot be

connected to ∂jQ by a path of diameter less than d1/2 inside Q. If �Q′ occurs,
there is a crossing to at least one of σ1 and σ3. We will work with configurations
with a crossing landing on σ3, the other case being symmetric, with the lowest
crossing replaced by the uppermost, so the total estimate will be double of what
we obtain.
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Consider a percolation configuration ω. On the event �Q′ , let γ be the “lowest”
ω-crossing of Q′ (in the sense that it is the closest to ∂1Q

′, i.e., separates ∂1Q
′

from all other ω-crossings of Q′ within [Q′]), and let x be the endpoint of γ on
∂2Q

′. Our assumption implies that x ∈ σ3, or there would be a lower crossing.
We now estimate μη(¬�Q | �Q′, γ, x ∈ σ3). Let M be the connected compo-

nent of [Q′] \γ which has ∂1Q
′ on its boundary. The event ¬�Q would imply that

γ cannot be connected to ∂2Q by a crossing inside [Q] \M . Hence, there is a dual
closed crossing from ∂3Q to (σ3 ∩ M̄) ∪ ∂1Q, in particular crossing the annulus
A(x, δ, d1/2) inside [Q] \ M .

The lowest crossing γ depends only on the configuration inside M , so the re-
striction of ω to [Q] \ M is unbiased. Therefore, the conditional probability of the
mentioned annulus crossing is can be bound by the RSW estimate (1.2) and we
conclude that

μη(¬�Q | �Q′, γ, x ∈ σ3) ≤ �1(δ, d1/2).(A.2)

Now we are ready to prove the estimate, working out separately three possibili-
ties:

(i) d = d1,
(ii) d = d0 > δ ≥ d1,

(iii) d = d0 > d1 > δ.

When (i) occurs, we majorate the probability of the event in question by the maxi-
mum of its conditional probability, estimated by (A.2), to arrive at

μη(�Q′ \ �Q) ≤ 2�1

(
δ,

d1

2

)
= 2�1

(
δ,

d

2

)
.(A.3)

When (ii) occurs, we use the estimate (A.1):

μη(�Q′ \ �Q) ≤ μη(�Q′) ≤ �1

(
d1 + δ,

d0 − δ

2

)
≤ �1

(
2δ,

d

4

)
.(A.4)

Finally, when (iii) occurs, we apply the total expectation law, using both estimates
(A.2) and (A.1) along the way:

μη(�Q′ \ �Q) ≤ E[μη(¬�Q | �Q′, γ, x ∈ σ3)]
+ E[μη(¬�Q | �Q′, γ, x ∈ σ1)]

≤ 2μη(�Q′)�1

(
δ,

d1

2

)
(A.5)

≤ 2�1

(
d1 + δ,

d0 − δ

2

)
�1

(
δ,

d1

2

)

≤ 2�1

(
2d1,

d

4

)
�1

(
δ,

d1

2

)
.
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To prove lemma in case (2), we have to show that for fixed d and any ε > 0,
the right-hand side of the estimates (A.3), (A.4) and (A.5) is smaller than ε, if
δ is small enough. For estimates (A.3) and (A.4), this follows directly from As-
sumption 1.2. For the remaining (A.5), let ρ > 0 be such that for r < ρ we have
�1(2r, d

4 ) < ε/2. Then if d1 ≤ ρ, then the right-hand side of (A.5) can be bounded
by

2�1

(
2d1,

d

4

)
�1

(
δ,

d1

2

)
≤ 2�1

(
2d1,

d

4

)
< ε,

we are done. Otherwise, d1 > ρ and the right-hand side of (A.5) can be bounded
by

2�1

(
2d1,

d

4

)
�1

(
δ,

d1

2

)
≤ 2�1

(
δ,

ρ

2

)
,

which tends to zero with δ by Assumption 1.2, and we finish the proof in case (2).
The proof for case (3) is easily obtained by considering the dual closed crossing

from ∂1 to ∂3 and applying case (2). The details are left to the reader. �

The following lemma shows that it is unlikely to see three crossings approach-
ing the same boundary point. This would make the crossing event unstable under
boundary perturbation, so in principle the lemma can be deduced from the previ-
ous one, but instead we give a self-contained proof. The lemma would follow from
considering the three arm event in half-annuli, for whose probability Aizenman
proposed an argument to be comparable to (r/R)2. We will use a version of his
reasoning along with RSW techniques to show a weaker estimate, sufficient for
our purposes.

LEMMA A.2. Let Q be a quad with smooth sides, two opposite being labeled
β and β ′, and with the tiles on each of the two other sides ν and ν′ possibly
declared all open or all closed. Then there is a function �Q(δ), tending to zero
with δ and such that the following estimate holds.

Denote by S(θ) the event that there are three crossings with some prescribed
alternating order (say closed, open, and closed) inside [Q] between the set θ ⊂ β ′
and β . Then for |η| < δ, we have

μη{∃θ ⊂ β ′ :S(θ),diam(θ) < δ} ≤ �Q(δ).

PROOF. Fix ε > 0. We shall prove that for sufficiently small δ the probability
of the event in question is less than ε.

Since crossings can in principle use tiles on the sides ν and ν′ (which are de-
clared open or closed), we have to treat θ ’s near the corners of Q separately. Let z1
and z2 be the endpoints of β ′. Since tiles on each of the arcs ν and ν′ can be used
by at most one of the three crossings, event S(θ) implies existence of at least one
crossing from θ to β inside [Q], not touching the sides. By assumption (1.2), there
is r ∈ (0, δ) such that probability to have a crossing between

⋃
i B(zi,2r) and β is
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smaller than ε/2:

μη

{
∃θ ⊂ ⋃

i

B(zi,2r) :S(θ)

}
≤ ε

2
.

Set β ′′ := β ′ \ ⋃
i B(zi, r), then to prove lemma it remains to show that

μη{∃θ ⊂ β ′′ :S(θ),diam(θ) < δ} ≤ ε

2
.(A.6)

Using assumption (1.2), choose ρ ∈ (0, r/4) such that �1(2ρ, r/2) < 1/2.
Cover β ′′ by a finite number n = n(ρ,β ′′) of overlapping arcs θj of diameter

at most ρ. Let δ < ρ be so small that �1(4δ, r) < ε/(12n). Since β ′ is smooth,
and decreasing δ if necessary, we can cover each arc θj by arcs θ l

j of length 3δ,
overlapping at most thrice, and such that any set θ ⊂ β ′′ of diameter less than δ is
entirely contained within one of the arcs θ l

j .
To deduce (A.6) it is sufficient to show that, for a fixed j ,∑

l

μη[S(θ l
j )] ≤ ε

2n
.(A.7)

Fix j and let B(z,ρ) be a radius ρ ball, containing θj . The point z1 splits ∂Q \ θj

into two arcs: λ′ ⊂ β ′ and a λ ⊃ β . Both start at endpoints of θj inside B(z,ρ) and
end at least r-away.

Observe that event S(θ l
j ) is contained in the event S′(θ l

j ) that there are three
alternating crossings inside [Q] between θ and β ∪ ν ∪ ν′.

Condition on the event S′(θ l
j ), and, starting from z2, denote the three such cross-

ings, closest to z2, by γ1, γ2, γ3. Namely, let γ1 be the closed crossing between θ

and β ∪ν ∪ν′ inside [Q], closest to z2. Let M1 be the component of connectivity of
[Q] \γ1, not containing z2. Then γ1 depends only on the percolation configuration
in [Q] \ M1.

Now, take γ2 be the open crossing between θ and β ∪ ν ∪ ν′ inside M1, closest
to γ1. Let M2 be the component of connectivity of M2 \ γ2, not containing γ1.
Then γ1 and γ2 depend only on the percolation configuration in [Q] \ M2.

We define γ3 and M3 similarly, and observe that γ1, γ2, γ3 depend only on
the percolation configuration in [Q] \ M3. Therefore, given M3 and the restriction
ω�([Q] \ M3) (i.e., the restriction of percolation configuration ω to [Q] \ M3), the
conditional law of the restriction of ω to M3 is unbiased.

Let S∗ = S∗(M3) be the event that there is a closed crossing γ4 between λ and
γ3 inside M3. Using that the restriction of ω to M3 is unbiased, we can then write

μη

[
S∗ | M3,ω�[Q] \ M3

] = μη[S∗] > 1 − P 1
η (z, ρ, r) > 1

2 .(A.8)

Above we use that (in an unbiased percolation configuration), if there is no open
crossing of the annulus A(z,ρ, r), then by duality there is a closed circuit (a path
going around the annulus), whose intersection with M3 would then contain a cross-
ing required for S∗.
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Note that when S′(θ l
j ) and S∗ occur, the crossing γ3 from [S(θ l

j )] and the cross-
ing γ4 (from S∗) together give a closed crossing between θ and λ, and so the
following event S′′(θ l

j ) occurs: there is a closed crossing γ ′
3 from θ to λ, an open

crossing from γ ′
2 from θ to β ∪ ν ∪ ν′, and a closed crossing from γ ′

1 from θ to
β ∪ ν ∪ ν′. Then the estimate (A.8) can be rephrased as

μη[S′′(θ l
j ) | S′(θ l

j )] ≥ 1
2 ,

and therefore

μη[S(θ l
j )] ≤ μη[S′(θ l

j )] ≤ 2μη[S′′(θ l
j )].(A.9)

Consider some percolation configuration ω in [Q], and assume that S′′(θ l
j )

holds for some θ l
j ⊂ θj .

Choose inside Q a closed crossing γ ′
3(ω) between λ′ and θj ; and an open cross-

ing γ ′
2(ω) between λ which are the closest to each other (and the point z1 separating

λ′ from λ). Denote by L = L(ω) the union of tiles in γ ′
2, γ ′

3, and in the part of [Q]
between them.

Then γ ′
2 and γ ′

3 depend only on the restriction of ω to L, and the rest is unbiased.
Moreover, if γ ′

2 ends at a tile on θj , then γ ′
3 ends at a neighboring tile on θj —

otherwise using duality reasoning we can choose two closer crossings. Denote by
x the only common vertex of these two tiles lying on the boundary of N . Note that
each configuration ω has a unique such point x = x(ω) and it depends only on the
restriction of ω to N .

Now for S(θ l
j ) to occur, besides γ ′

2 and γ ′
3 we must also have a closed crossing

γ ′
1 from θ to β ∪ ν ∪ ν′. The crossing γ ′

1 necessarily lies in [Q] \ N , which is
unbiased on ω�N . Note also that γ ′

1 contains a crossing of the annulus A(x,2δ, r),
whose center x is a random point depending on ω�L only. Summing it up, we can
estimate

μη{ω :S′′(θ l
j ) | x(ω) = x} ≤ P 1

η (x,4δ, r) ≤ �1(4δ, r) <
ε

12n
.

Since every point x is covered by at most three arcs θ l
j , we recall (A.9) and con-

clude that∑
l

μη[S(θ l
j )] ≤ ∑

l

2μη[S′′(θ l
j )]

= ∑
x

∑
l

2μη{ω :S(θ l
j ) | x(ω) = x}μη{ω :x(ω) = x}

≤ ∑
x

(
2 · 3 · ε

12n

)
μη{ω :x(ω) = x}

≤ ε

2n

∑
x

μη{ω :x(ω) = x} ≤ ε

2n
,

so estimate (A.7) and the lemma follow. �
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APPENDIX B: MULTI-SCALE BOUND ON THE FOUR-ARM EVENT ON
Z

2 (BY CHRISTOPHE GARBAN)

In this Appendix, we give a proof of assumption (1.3) for critical bond percola-
tion on the square lattice. Namely:

LEMMA B.1. For critical bond percolation on the square lattice with
mesh |η|, there is a positive ε such that the probability of a four arm event sat-
isfies

P 4
η (z, r,R) ≤ const

(
r

R

)1+ε

,(B.1)

whenever |η| < r .

The case r = |η| can be extracted from [22] as well as [3] or [32]. Note that
the above multi-scale generalization is not a consequence of the so-called “quasi-
multiplicativity” property. If one wanted to use this property, the problem would
more or less boil down to the existence of the four-arm critical exponent. Since
its existence is still open, we believe that Lemma B.1 cannot be extracted directly
from the above mentioned papers.

In the papers [3, 32], the general idea which enables one to prove that points are
unlikely to be pivotal is the observation that a macroscopic crossing event for crit-
ical percolation is asymptotically uncorrelated with the Majority Boolean function
defined on the same set of bits. This asymptotic uncorrelation can be understood
using an exploration path which will compute the percolation event while giving
little information on the Majority event. A careful analysis then shows that this
decorrelation is possible only if points are unlikely to be pivotal for the perco-
lation event. This heuristical program has been carried out in a very convenient
manner in [30].

The present proof has the same flavor except that one now looks at the cor-
relation of a percolation event in a domain of diameter O(R) with a two-layers
majority function: namely the bits of this Majority function are now indexed by
the O(R2/r2) r-squares included in the domain and for each such r-square, its
corresponding bit ±1 depends on how “connected” the percolation configuration
is within this square. This setup allows to “interpolate” the above program from
the macroscopic scale R to the mesoscopic scale r .

PROOF OF LEMMA B.1. We leave out a few details, which are easy to fill in
for readers familiar with the applications of the RSW theory, similar to [13, 22,
36].

After rescaling and, if needed, changing the radii by bounded factors, we can
assume without loss of generality that the lattice mesh is 1 and r , R are positive
integers.
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Denote by Q an R × R square, and cut the concentric 1
3Q square into r × r

squares, denoted by Qj , with j = 1, . . . , ( R
3r

)2. Denote by X = 2 · 1�Q
− 1 the

“crossing random variable” equal to 1 when Q is crossed and −1 otherwise. Given
a percolation configuration ω, we say that Qj is pivotal for X, if altering ω so that
all the bonds in Qj are open, and so that all the bonds in Qj are closed yields two
different values of X. Note that Qj is pivotal for X if and only if then there are two
open arms connecting ∂Qj to ∂0Q and ∂2Q, and two dual closed arms connecting
∂Qj to ∂1Q and ∂3Q. By arm separation properties similar to ones used in [36],

P 4(r,R) � P[Qj pivotal for X],(B.2)

and so it is sufficient to estimate the latter probability, or its sum over all Qj ’s.
Let Sj be an annulus (1− δ)Qj \ (1−2δ)Qj where αQj denotes a copy shrank

of Qj by a factor of α (if r is not exactly divisible by α, the copy shrank is under-
stood modulo integer parts). The fixed parameter δ > 0 will be chosen later. Let
S∗

j denote the same annulus but on the dual lattice: that is, S∗
j = Sj + (1/2,1/2).

Define a random variable Cj equal to:

• 1, if there is an open circuit in Sj and no dual-closed circuit in S∗
j ,

• −1, if there is a dual-closed circuit in S∗
j and no open circuit in Sj ,

• 0, otherwise.

Note that by symmetry and by the RSW theory, up to the constant depending on δ,

E[Cj ] = 0, E[C2
j ] � 1.(B.3)

Now, let us argue that if δ > 0 is chosen small enough, one has

E[XCj ] � P[Qj pivotal for X] [�P 4(r,R)].(B.4)

Indeed, one has

E[XCj ] = P[Qj pivotal for X]E[XCj | Qj pivotal for X],(B.5)

since, conditioned on the event that Qj is not pivotal for X, Cj is independent
of X and is such that its (conditional) expectation is still 0. Therefore, it remains
to bound from below E[XCj | Qj pivotal for X]. Let ρ = ρ(δ) > 0 be such that
P[Cj = 1] = P[Cj = −1] > ρ.

E[XCj | Qj pivotal for X]
= P[Cj = 1]E[X | Cj = 1 and Qj pivotal for X]

− P[Cj = 1]E[X | Cj = −1 and Qj pivotal for X].
Now, again by arm separation properties similar to ones used in [32, 36], and

using the important fact that the event {Cj = 1} is increasing which enables to use
FKG for the given conditional law inside Qj , one can see that, if δ is chosen small
enough,

E[X | Cj = 1 and Qj pivotal for X] > 1
4 .
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One has the opposite bound for the term conditioned on {Cj = −1}. All together
this gives

E[XCj | Qj pivotal for X] >
ρ

2
,

which implies the desired estimate (B.4) if δ is chosen to be small enough.
Consider Q with open boundary conditions on the side ∂0Q and dual closed

on the complementary three sides. Let γ be the interface running between the two
ends of the side ∂0Q and separating the open cluster rooted on it from the dual
closed cluster rooted on the three other sides.

Denote by Yj the event that γ intersects Qj , as well as its indicator function.
Note that, by the RSW theory,

E[Yj ] �
(

r

R

)2ε

(B.6)

for some positive ε. Note that the interface γ drawn from Q(0,0) until some stop-
ping time depends only on the percolation configuration in the immediate neigh-
borhood of the drawn part. Drawing γ until the first time it hits ∂Qj , we conclude
that Yj is independent from the inside of Qj and hence from Cj .

Note also that, if Qj is pivotal for X, then there are four alternating arms con-
necting ∂Qj to four sides of Q which forces the interface γ to intersect Qj , and
Yj to occur. Therefore, similarly as for the estimate (B.5) above, one can check
that

E[XCj ] = E[XCjYj ],(B.7)

which combined with (B.4) gives

P[Qj pivotal for X] � E[XCjYj ].(B.8)

Summing over all Qj ’s, we use the Cauchy–Schwarz inequality to write

∑
j

E[XCjYj ] = E
[
X

∑
j

CjYj

]
≤

√√√√E[X2] · E
[(∑

j

CjYj

)2]
(B.9)

=
√√√√E[1] · E

[∑
i,j

CiYiCjYj

]
=

√∑
i,j

E[CiYiCjYj ].

In the last sum, nondiagonal terms vanish. Indeed, let i �= j and stop the interface
γ the first time it touched both squares Qi and Qj , or when it ends.

Denote by Qk the first square of Qi , Qj to be hit (or Qi if none was) and by Ql

the other one, so that (k, l) is a superposition of (i, j). Let W be the percolation
configuration in the immediate neighborhood of the interface so far, and in Qk .
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Then W determines Yi , Yj , Ck , while being independent of Cl . Thus by the
identity in (B.3),

E[CiYiCjYj | W ] = E[YiYjCk | W ] · E[Cl] = 0.

By the total expectation formula we conclude that, for i �= j ,

E[CiYiCjYj ] = 0.

Thus, we can continue (B.9), leaving only the diagonal terms, and use (B.6) and
(B.3) to write

· · · =
√∑

j

E[C2
j Y 2

j ] =
√∑

j

E[C2
j ] · E[Y 2

j ]

�
√√√√∑

j

1 ·
(

r

R

)2ε

=
(

r

R

)ε−1

.

Combining this with (B.2), (B.8), (B.9), we conclude

P 4(r,R) �
(

3r

R

)2 ∑
j

P[Qj pivotal for X]

�
(

r

R

)2(
r

R

)ε−1

=
(

r

R

)1+ε

,

proving the lemma. �
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