Open Access
October 2003 Finitary coding for the one-dimensional ${T,T^{-1}}$ process with drift
Michael Keane, Jeffrey E. Steif
Ann. Probab. 31(4): 1979-1985 (October 2003). DOI: 10.1214/aop/1068646374
Abstract

We show that there is a finitary isomorphism from a finite state independent and identically distributed (i.i.d.) process to the $T,T^{-1}$ process associated to one-dimensional random walk with positive drift. This contrasts with the situation for simple symmetric random walk in any dimension, where it cannot be a finitary factor of any i.i.d. process, including in $d\ge 5$, where it becomes weak Bernoulli.

References

1.

den Hollander, F. and Steif, J. E. (1997). Mixing properties of the generalized $T,T^-1$-process. J. Anal. Math. 72 165--202. MR1482994 den Hollander, F. and Steif, J. E. (1997). Mixing properties of the generalized $T,T^-1$-process. J. Anal. Math. 72 165--202. MR1482994

2.

Kalikow, S. (1982). $T,T^-1$ transformation is not loosely Bernoulli. Ann. of Math. (2) 115 393--409. MR647812 0003-486X%28198203%292%3A115%3A2%3C393%3ATINLB%3E2.0.CO%3B2-E Kalikow, S. (1982). $T,T^-1$ transformation is not loosely Bernoulli. Ann. of Math. (2) 115 393--409. MR647812 0003-486X%28198203%292%3A115%3A2%3C393%3ATINLB%3E2.0.CO%3B2-E

3.

Keane, M. and Smorodinsky, M. (1977). A class of finitary codes. Israel J. Math. 26 352--371. MR450514 Keane, M. and Smorodinsky, M. (1977). A class of finitary codes. Israel J. Math. 26 352--371. MR450514

4.

Keane, M. and Smorodinsky, M. (1979a). Bernoulli schemes of the same entropy are finitarily isomorphic. Ann. of Math. (2) 109 397--406. MR528969 0003-486X%28197905%292%3A109%3A2%3C397%3ABSOTSE%3E2.0.CO%3B2-5 Keane, M. and Smorodinsky, M. (1979a). Bernoulli schemes of the same entropy are finitarily isomorphic. Ann. of Math. (2) 109 397--406. MR528969 0003-486X%28197905%292%3A109%3A2%3C397%3ABSOTSE%3E2.0.CO%3B2-5

5.

Keane, M. and Smorodinsky, M. (1979b). Finitary isomorphisms of irreducible Markov shifts. Israel J. Math. 34 281--286. MR570887 Keane, M. and Smorodinsky, M. (1979b). Finitary isomorphisms of irreducible Markov shifts. Israel J. Math. 34 281--286. MR570887

6.

Meshalkin, L. D. (1959). A case of isomorphism of Bernoulli schemes. Dokl. Akad. Nauk. SSSR 128 41--44. MR110782 0099.12301 Meshalkin, L. D. (1959). A case of isomorphism of Bernoulli schemes. Dokl. Akad. Nauk. SSSR 128 41--44. MR110782 0099.12301

7.

Rudolph, D. J. (1981). A characterization of those processes finitarily isomorphic to a Bernoulli shift. Progr. Math. 10 1--64. MR633760 0483.28015 euclid.bj/1077544601 Rudolph, D. J. (1981). A characterization of those processes finitarily isomorphic to a Bernoulli shift. Progr. Math. 10 1--64. MR633760 0483.28015 euclid.bj/1077544601

8.

Rudolph, D. J. (1982). A mixing Markov chain with exponentially decaying return times is finitarily Bernoulli. Ergodic Theory Dynam. Systems 2 85--97.  MR684246 Rudolph, D. J. (1982). A mixing Markov chain with exponentially decaying return times is finitarily Bernoulli. Ergodic Theory Dynam. Systems 2 85--97.  MR684246

9.

Steif, J. E. (2001). The $T,T^-1$-process, finitary codings and weak Bernoulli. Israel J. Math. 125 29--43. MR1853803 Steif, J. E. (2001). The $T,T^-1$-process, finitary codings and weak Bernoulli. Israel J. Math. 125 29--43. MR1853803
Copyright © 2003 Institute of Mathematical Statistics
Michael Keane and Jeffrey E. Steif "Finitary coding for the one-dimensional ${T,T^{-1}}$ process with drift," The Annals of Probability 31(4), 1979-1985, (October 2003). https://doi.org/10.1214/aop/1068646374
Published: October 2003
Vol.31 • No. 4 • October 2003
Back to Top