Abstract
Soit $X =(X _t)_t \geq 0$ un processus de Poisson ponctuel àvaleurs dans $]0;+\infty[$. On suppose que la mesure caractéristique $\mu$ est infinie, mais que $0 < \mu]a;+\infty[<+\infty$ pour tout $a>0$. On démontre qu’il n’est pas possible d’énumérer les instants de records larges du processus $X$ par une suite strictement croissante de temps d’arrêt (indexée par Z). La preuve repose sur l’inexistence de chaînes de Markov indexées par Z pour les probabilités de transition $\pi_x=\mathscr{l}_{[x;+\infty}[\mu/\mu[x;+\infty[=\mu[\cdot|[x;+\infty[]$. Lorsqu¡’on s’intéresse aux records stricts,ce résultat peut être mis en défaut: nous donnons une condition nécessaire et suffisante sur la mesure $\mu$pour que l’on puisse énumérer les instants de records stricts par une suite strictement croissante de temps d’arrêt. Enfin, nous étudions s’il est possible ou non de numéroter cycliquement et optionnellement les instants de records larges dans une filtration pour laquelle le processus $X$ soit Poissonien. Nous montrons que cela dépend de la filtration et que c’est impossible dans la filtration naturelle associée au processus $X$ .
Citation
Jean Brossard. Christophe Leuridan. "Numérotation Des Records D'un Processus de Poisson Ponctuel (French) [The Numbering of Records of a Poisson Point Process]." Ann. Probab. 27 (3) 1304 - 1323, July 1999. https://doi.org/10.1214/aop/1022677448
Information