Abstract
Under mild assumptions we prove that for any local function $u$ the decay rate to equilibrium in the variance sense of zero range dynamics on $d$-dimensional integer lattice is $C_u t^{-d/2}+ o(t^{-d/2})$. The constant $C_u$ is computed explicitly.
Citation
E. Janvresse. C. Landim. J. Quastel. H. T. Yau. "Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range Processes." Ann. Probab. 27 (1) 325 - 360, January 1999. https://doi.org/10.1214/aop/1022677265
Information