Abstract
An analogue of the Lai-Siegmund nonlinear renewal theorem is proved for processes of the form $S_n + \xi_n$, where $\{S_n\}$ is a Markov random walk. Specifically, $Y_0,Y_1,\cdots$ is a Markov chain with complete separable metric state space; $X_1,X_2,\cdots$ is a sequence of random variables such that the distribution of $X_i$ given $\{Y_j, j \geq 0\}$ and $\{X_j, j \neq i\}$ depends only on $Y_{i - 1}$ and $Y_i; S_n = X_1 + \cdots + X_n$; and $\{\xi_n\}$ is slowly changing, in a sense to be made precise below. Applications to sequential analysis are given with both countable and uncountable state space.
Citation
Vincent F. Melfi. "Nonlinear Markov Renewal Theory with Statistical Applications." Ann. Probab. 20 (2) 753 - 771, April, 1992. https://doi.org/10.1214/aop/1176989804
Information