Abstract
For a Harris recurrent Markov chain with invariant initial distribution $\pi$, we consider the return times $\tau_\varepsilon$ to state sets $A_\varepsilon$ with $0 < \pi(A_\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and show that, provided the probability of early returns to $A_\varepsilon$ approaches 0, the $\tau_\varepsilon$, multiplied by suitable scaling factors, are asymptotically exponentially distributed.
Citation
Robert Cogburn. "On the Distribution of First Passage and Return Times for Small Sets." Ann. Probab. 13 (4) 1219 - 1223, November, 1985. https://doi.org/10.1214/aop/1176992806
Information