Open Access
November, 1985 On the Distribution of First Passage and Return Times for Small Sets
Robert Cogburn
Ann. Probab. 13(4): 1219-1223 (November, 1985). DOI: 10.1214/aop/1176992806

Abstract

For a Harris recurrent Markov chain with invariant initial distribution $\pi$, we consider the return times $\tau_\varepsilon$ to state sets $A_\varepsilon$ with $0 < \pi(A_\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and show that, provided the probability of early returns to $A_\varepsilon$ approaches 0, the $\tau_\varepsilon$, multiplied by suitable scaling factors, are asymptotically exponentially distributed.

Citation

Download Citation

Robert Cogburn. "On the Distribution of First Passage and Return Times for Small Sets." Ann. Probab. 13 (4) 1219 - 1223, November, 1985. https://doi.org/10.1214/aop/1176992806

Information

Published: November, 1985
First available in Project Euclid: 19 April 2007

zbMATH: 0591.60063
MathSciNet: MR806219
Digital Object Identifier: 10.1214/aop/1176992806

Subjects:
Primary: 60J05
Secondary: 60E05 , 60F05 , 60G10 , 60K05

Keywords: exponential distribution , first passage times , Harris recurrent Markov chains , return times , state sets of small probability

Rights: Copyright © 1985 Institute of Mathematical Statistics

Vol.13 • No. 4 • November, 1985
Back to Top