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ON THE DISTRIBUTION OF FIRST PASSAGE AND RETURN
TIMES FOR SMALL SETS

BY ROBERT COGBURN
The University of New Mexico

For a Harris recurrent Markov chain with invariant initial distribution 7,
we consider the return times 7, to state sets A, with0 < 7(A,) > 0ase—0
and show that, provided the probability of early returns to A, approaches 0,
the 7., multiplied by suitable scaling factors, are asymptotically exponentially
distributed.

1. Introduction. Mark Kac in a lecture at the University of New Mexico in
1983 noted that, for many stationary ergodic processes, the return times to sets of
small probability are asymptotically exponentially distributed. His remark in-
spired this small study. News of his death came during the process of revision and
extension of these results, and this paper is respectfully dedicated to his memory.

Of course an exponential distribution for the return time would provide
information going beyond Kac’s famous formula: [,7,dP = 1 for any stationary
ergodic probability P and event A with P(A) > 0, where 7, is the return time to
A [Kac (1947)].

Results of this type were first established by T. E. Harris (1952) for a positive
recurrent Markov chain on a denumerable state space. Harris considered first
passage times for a sequence of states, x,, converging to infinity. The first
passage times to these states, starting from a fixed state, are asymptotically
exponentially distributed. The return times to x, (for the process started at x,)
will have this property only if the probability of an early return to x, converges
. to 0. Otherwise visits to x,, tend to occur in clusters and the first return may have
any sort of distribution.

In this study we make no attempt to tackle the general stationary ergodic
sequence, but do consider a Harris recurrent Markov chain on a general state
space (X,A) with finite invariant measure. In effect, we generalize the return
time result of Harris (1952) to general state spaces, with a sequence of small sets
replacing the states x,,.

Let 7 denote the invariant initial distribution on (X,A) and P” denote the
n-step transition probability. For anyinitial distribution ¢, P, denotes the
resulting distribution on the chain X, X,, X,,..., and E, denotes the corre-
sponding expectation. When ¢ = §,, we write P, E, for P,, E,, respectively.
Also, for any event A with #(A) > 0, =, is defined by =,(B) = w(AB)/w(A).

Our approach depends on the recurrence times defined by Athreya and Ney
(1978). They assume a Harris recurrent Markov chain possessing a C set:
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1220 R. COGBURN

CeA is a C setif w(C)> 0 and there exists an n and ¢ > 0 such that
P™(x,A) > en(A) forallx € Cand A € A with A c C. Provided A is countably
generated, a Harris recurrent Markov chain always possesses a C set. We do not
need to assume A countably generated for our result since, if the asserted
convergences failed as ¢ — 0, then they would fail for some sequence ¢, — 0. But
if we consider only the sequence {A, }, then it is possible to form an adm1ss1ble
countably generated sub-o field of A containing this sequence [see Orey (1971)],
and the theorem would then hold for the A, s. Thus, without loss of generality,
we assume existence of a C set.

We will let C denote a fixed C set in what follows. Then Athreya and Ney
(1978) show there exist times 0 = p, < p; < p, < --- such that, starting the
process with distribution 7., the random variables X, X , X, ,... are indepen-
dent and identically distributed. Combining this w1th the strong Markov prop-
erty for discrete parameter Markov chains it is also true that the random vectors
Y,=(X, .1-.--»X,), n=12,... areindependent and identically distributed.
Moreover, in our case where « is finite, it is true that E, (p,) < co. It may help
to explain that the p,s are chosen from the successive passages of C by a
supplementary randomizing distribution. As Nummelin (1978) shows, we can in
effect treat the p,s as passage times of a positive atom. Starting with any
distribution ¢, it will be true that P,[X, € A]=7,(A), A€ A, k> 1.

Now consider a family of sets {4, € A,e > 0} with 0 <#(A,) > 0as e — 0.
This family remains fixed, and we let 7, be the first 2 > 1 such that x, € A, i.e
the first passage times of A, (or return times if X, € A,). Set

=P, [r.<p,] and p=E, p,.

The following two theorems describe the basic results:

THEOREM 1. For any initial distribution ¢ < 7 and t > 0,
P pas/pm>t] >e!

as ¢ = 0 (i.e., p7./p converges in distribution to a unit exponential).

THEOREM 2. Foranyt> 0, as € = 0,
F, [P.»,’"A/H > t] - P, [74 > p]e"t>0.

The factor P, [’TA > p,] can be interpreted as the probability of no early
return to A,

NoTe. In the process of revision the work of Korolyuk and Sil’vestrov (1984)
came to our attention. They obtain a result in some respects more general than
Theorem 1, showing that, if P(x,A,)—> 0 as ¢ > 0 for every x, then the
conclusion of Theorem 1 holds for ¢ = §, for every x (and it follows readily that
the theorem holds for arbitrary ¢, not necessarily = continuous). While our
Theorem 1 is not directly a consequence of their result, it is essentially a simpler
result. It can be proven by methods similar to those of Korolyuk and Sil’vestrov,
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or by using renewal theory in a way similar to our proof of Theorem 2. For these
reasons we omit the proof of Theorem 1.

Proor oF THEOREM 2. As noted in the Introduction, it suffices to prove the
theorem for an arbitrary sequence {A,} with 0 < 7(A,)— 0 as n — oco. To
simplify notation, we let 7, denote the first £ > 1 such that X, € 4, 7,.= 7, ,
and p, = P, [, < p,]. Let X#" be the space of sequences (X,, X;,...) in X and
0(Xo, Xy, ...) = (X, Xj4p5...). For f: X% > R' we write E,f for
E,f(Xy, X,,...). The following lemma is a variation on a standard result.

LEMMA 1. Let f: X% > R! be measurable and either bounded below or
bounded above. Then

2!
wa = ’J’_IEWC( Z foek)'
k=1

ProoF. Without loss of generality assume f > 0. By the ergodic theorem
Yi_i1feb,/n— E,fas —P,. Since |n,P" — 7| > 0asn — oo, P, = P, on the
tail o field [see Orey (1971)], hence X4~ ,f°0,/p, = E,f as. —P, . Since the
blocks between p,, are i.i.d., the strong law of large numbers implies

Pr P
Y fob,/n— E,,C( Y f°0k) as. =P,
k=1 k=1 ’
and p,/n = E, p, = p as. —F; as n - oo. Hence

nl1 Pr, Pn
Eﬂf “as. lim —— Z f°0k =a.s.E1rC( Z f°0k).D
k=1

n—o0 P N 4y
LEMMA 2. p, < pm(A,).

Proor. Let f(X,, X;,...) = I;(X,) in Lemma 1 to get

P
m(A,) =E,f,= M‘EWC( )y IAn(Xk)) >p P, [1,<p]=p""p,.0
k=1

LEMMA 3. Foranyé >0, asn — o©
P, [p,>8/p, and 7, > 8/p,] - 0.

PROOF. Let f(Xg, Xy,...) = Ly(Xo) iy, » 5/p,11ir, » 8/p,1- Note that f, o8, =
Oorl,and f,°6,=1 for some 1 <j < p, implies 7, < p;, p; 2j + 8/p,, and
fnol,=0for j<k<j+8/p, while fo§, =1 implies p, > §/p,. Hence

Py

N Y fno 0k < (P/8)erdls, <o+ L1 =piidin, 2 /0,10
k=1
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and by Lemma 1 and the renewal property of p,
P1
“E‘ﬂfn = EWC( Z fn°0k)
k=1

= (pn/a)EvrC(plI['rn<pl]) + PﬂC[Tn = pl]P‘ﬂC[pl = 6/pn]'

The first term on the right is o( p,) by the dominated convergence theorem, since
P [1,<p]< P [, < p,]=p, — 0, while the second term is o(p?), hence

E_f, = o(p,). Since m(A,) ' < pp, ' by Lemma 2, we have

P, [p,>8/p,and 1,>8/p,] = 7(4,) 'E,f,=o(1).0

* PROOF OF THEOREM 2. We have
P, [ p./p>t] = P, [7,> p, and p,,/n > t]
<P, [p, = pt/p, and 7, > pt/p,] = o(1)
by Lemma 3. Use the renewal property of p, to get

[ee]
P, [1,> p, and 7, > ut/p,] = Eﬂ( Y I s poii Pl t B> ut/pn])
k=1

[~¢]
= E‘ﬂn( Z I[‘rn>pl=k]P7rC[Tn > [.Lt/pn])
k=1

=P [7,> ple t+ o(1),
using Theorem 1 at the last step. On the other hand, for any 0 < § < ¢,
P, [7,> p,and 7, > pt/p,]
[3p/p.]

Squn[q'n,> p1>81"’/pn] +E7rn E I[‘r,,>p|=k]PﬂC[Tn>p‘(t_8)/pn]
k=1

=P, [p, <8u/p,and 7,>p,]e” "2 + 0(1)
by Lemma 3 and Theorem 1. Moreover,
P, [7,>p]— P, [p, < bp/p, and 7, > p,]
<P, [p, > du/p, and 7, > 8u/p,] = o(1)
by Lemma 3 again. Since 8 > 0 is arbitrary we have
P, [, > p, and p,r,/p > t]=P, [7,> p,]e "+ 0(1),

and the theorem follows.
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