November 2024 Bias in cubic Gauss sums: Patterson's conjecture
Alexander Dunn, Maksym Radziwiłł
Author Affiliations +
Ann. of Math. (2) 200(3): 967-1057 (November 2024). DOI: 10.4007/annals.2024.200.3.3

Abstract

Let $W$ be a smooth test function with compact support in $(0,\infty)$. Conditional on the Generalized Riemann Hypothesis for Hecke $L$-functions over $\mathbb{Q}(\omega)$, we prove that $$\begin{matrix} \displaystyle \sum_{p \equiv 1 \pmod{3}} \frac{1}{2 \sqrt{p}} \cdot \Big ( \sum_{x \pmod{p}} e^{2\pi i x^3 / p} \Big ) W \Big (\frac{p}{X} \Big ) \\ \displaystyle \qquad\qquad\sim \frac{(2\pi)^{2/3}}{3 \Gamma(\frac{2}{3})} \int_{0}^{\infty} W(x) x^{-1/6} dx \cdot \frac{X^{5/6}}{\log X},\end{matrix}$$as $X\to \infty$ and $p$ runs over primes. This explains a well-known numerical bias in the distribution of cubic Gauss sums first observed by Kummer in 1846 and confirms (conditionally on the Generalized Riemann Hypothesis) a conjecture of Patterson from 1978.

There are two important byproducts of our proof. The first is an explicit level aspect Voronoi summation formula for cubic Gauss sums, extending computations of Patterson and Yoshimoto. Secondly, we show that Heath-Brown's cubic large sieve is sharp up to factors of $X^{o(1)}$ under the Generalized Riemann Hypothesis. This disproves the popular belief that the cubic large sieve can be improved.

An important ingredient in our proof is a dispersion estimate for cubic Gauss sums. It can be interpreted as a cubic large sieve with correction by a non-trivial asymptotic main term. This estimate relies on the Generalized Riemann Hypothesis, and is one of the fundamental reasons why our result is conditional.

Citation

Download Citation

Alexander Dunn. Maksym Radziwiłł. "Bias in cubic Gauss sums: Patterson's conjecture." Ann. of Math. (2) 200 (3) 967 - 1057, November 2024. https://doi.org/10.4007/annals.2024.200.3.3

Information

Published: November 2024
First available in Project Euclid: 1 November 2024

Digital Object Identifier: 10.4007/annals.2024.200.3.3

Subjects:
Primary: 11F27 , 11F30 , 11L05 , 11L15 , 11L20 , 11N36

Keywords: automorphic forms , cubic Gauss sums , large sieve , Patterson's conjecture , primes

Rights: Copyright © 2024 Department of Mathematics, Princeton University

JOURNAL ARTICLE
91 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.200 • No. 3 • November 2024
Back to Top