November 2018 A proof of Onsager's conjecture
Philip Isett
Author Affiliations +
Ann. of Math. (2) 188(3): 871-963 (November 2018). DOI: 10.4007/annals.2018.188.3.4

Abstract

For any $\alpha \lt 1/3$, we construct weak solutions to the 3D incompressible Euler equations in the class $C_tC_x^\alpha$ that have nonempty, compact support in time on $\mathbb{R}\times \mathbb{T}^3$ and therefore fail to conserve the total kinetic energy. This result, together with the proof of energy conservation for $\alpha > 1/3$ due to [Eyink] and [Constantin, E, Titi], solves Onsager's conjecture that the exponent $\alpha = 1/3$ marks the threshold for conservation of energy for weak solutions in the class $L_t^\infty C_x^\alpha$. The previous best results were solutions in the class $C_tC_x^\alpha$ for $\alpha \lt 1/5$, due to [Isett], and in the class $L_t^1 C_x^\alpha$ for $\alpha \lt 1/3$ due to [Buckmaster, De Lellis, Székelyhidi], both based on the method of convex integration developed for the incompressible Euler equations by [De Lellis, Székelyhidi]. The present proof combines the method of convex integration and a new ``Gluing Approximation" technique. The convex integration part of the proof relies on the ``Mikado flows" introduced by [Daneri, Székelyhidi] and the framework of estimates developed in the author's previous work.

Citation

Download Citation

Philip Isett. "A proof of Onsager's conjecture." Ann. of Math. (2) 188 (3) 871 - 963, November 2018. https://doi.org/10.4007/annals.2018.188.3.4

Information

Published: November 2018
First available in Project Euclid: 23 December 2021

Digital Object Identifier: 10.4007/annals.2018.188.3.4

Subjects:
Primary: 35A02 , 35D30 , 35Q31 , 76B03 , 76F02 , 76F05

Keywords: anomalous dissipation , conservation of energy , convex integration , dissipation , energy conservation , energy dissipation , Euler equations , fluid dynamics , incompressible , Nonuniqueness , Onsager conjecture , Onsager's conjecture , regularity , turbulence , weak solutions

Rights: Copyright © 2018 Department of Mathematics, Princeton University

JOURNAL ARTICLE
93 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.188 • No. 3 • November 2018
Back to Top