Open Access
2013 On the Cesáro operator in weighted‎ ‎$\ell^2$-sequence spaces and the generalized concept of normality
Julia Wagner
Ann. Funct. Anal. 4(2): 1-11 (2013). DOI: 10.15352/afa/1399899521

Abstract

‎The weighted Cesáro operator $C_h$ in $\ell^2(h)$-spaces is‎ ‎investigated in terms of several concepts of normality‎, ‎where $h$‎ ‎denotes a positive discrete measure on $\mathcal{N}$‎. ‎We classify exactly‎ ‎those $h$ for which $C_h$ is hyponormal‎. ‎Two examples related to the‎ ‎Haar measures of orthogonal polynomials are discussed‎. ‎We show that‎ ‎the Cesáro operator is not always paranormal‎. ‎Furthermore‎, ‎we‎ ‎prove that the Cesáro operator is not quasinormal for any choice‎ ‎of $h$.

Citation

Download Citation

Julia Wagner. "On the Cesáro operator in weighted‎ ‎$\ell^2$-sequence spaces and the generalized concept of normality." Ann. Funct. Anal. 4 (2) 1 - 11, 2013. https://doi.org/10.15352/afa/1399899521

Information

Published: 2013
First available in Project Euclid: 12 May 2014

MathSciNet: MR3034926
Digital Object Identifier: 10.15352/afa/1399899521

Subjects:
Primary: 47B37
Secondary: ‎33D45 , 47B20

Keywords: Cesáro operator , ‎hyponormal operator , orthogonal polynomials , paranormal operator , quasinormal operator

Rights: Copyright © 2013 Tusi Mathematical Research Group

Vol.4 • No. 2 • 2013
Back to Top