Open Access
2012 Singular value and‎ ‎arithmetic-geometric mean inequalities for operators
Hussien Albadawi
Ann. Funct. Anal. 3(1): 10-18 (2012). DOI: 10.15352/afa/1399900020

Abstract

‎A singular value inequality for sums and products of Hilbert space operators‎ ‎is given‎. ‎This inequality generalizes several recent singular value‎ ‎inequalities‎, ‎and includes that if $A$‎, ‎$B$‎, ‎and $X$ are positive operators‎ ‎on a complex Hilbert space $H$‎, ‎then ‎\begin{equation*}‎ ‎s_{j}\left( A^{^{1/2}}XB^{^{1/2}}\right) \leq \frac{1}{2}\left\Vert‎ ‎X\right\Vert \text{ }s_{j}\left( A+B\right) \text{, ‎\‎ ‎}j=1,2,\cdots\text{,}‎ ‎\end{equation*} ‎which is equivalent to‎ ‎ \begin{equation*}‎ ‎s_{j}\left( A^{^{1/2}}XA^{^{1/2}}-B^{^{1/2}}XB^{^{1/2}}\right) \leq‎ ‎\left\Vert X\right\Vert s_{j}\left( A\oplus B\right) \text{, ‎\ }j=1,2,\cdots ‎\text{.}‎ ‎\end{equation*}‎ ‎ Other singular value inequalities for sums and products of operators are‎ ‎presented‎. ‎Related arithmetic-geometric mean inequalities are also‎ ‎discussed‎.

Citation

Download Citation

Hussien Albadawi. "Singular value and‎ ‎arithmetic-geometric mean inequalities for operators." Ann. Funct. Anal. 3 (1) 10 - 18, 2012. https://doi.org/10.15352/afa/1399900020

Information

Published: 2012
First available in Project Euclid: 12 May 2014

zbMATH: 1270.47013
MathSciNet: MR2903264
Digital Object Identifier: 10.15352/afa/1399900020

Subjects:
Primary: 47A30
Secondary: 15A18‎ , 47A63 , 47B10

Keywords: ‎arithmetic-geometric mean inequality , positive operator , Singular value , ‎unitarily invariant norm

Rights: Copyright © 2012 Tusi Mathematical Research Group

Vol.3 • No. 1 • 2012
Back to Top