Abstract
Let $\mathcal{A}$ and $\mathcal{B}$ be two Banach algebras and let $\mathcal{M}$ be a Banach $\mathcal{B}$-bimodule. Suppose that $\sigma:\mathcal{A} \rightarrow \mathcal{B}$ is a linear mapping and $d:\mathcal{A} \rightarrow \mathcal{M}$ is a $\sigma$-derivation. We prove several results about automatic continuity of $\sigma$-derivations on Banach algebras. In addition, we define a notion for m-weakly continuous linear mapping and show that, under certain conditions, $d$ and $\sigma$ are m-weakly continuous. Moreover, we prove that if $\mathcal{A}$ is commutative and $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ is a continuous homomorphism such that $\sigma^{2} = \sigma$ then $\sigma d \sigma (\mathcal{A}) \subseteq \sigma(Q(\mathcal{A})) \subseteq rad(\mathcal{A})$.
Citation
M. Hassani. S. Hejazian. A. Hosseini. A. Niknam. "Some results on $\sigma$-derivations." Ann. Funct. Anal. 2 (2) 75 - 84, 2011. https://doi.org/10.15352/afa/1399900196
Information