Open Access
2011 Some results on $\sigma$-derivations
‎M‎. ‎Hassani‎, ‎S‎. ‎Hejazian, A‎. ‎Hosseini‎, ‎A‎. ‎Niknam‎
Ann. Funct. Anal. 2(2): 75-84 (2011). DOI: 10.15352/afa/1399900196

Abstract

‎Let $\mathcal{A}$ and $\mathcal{B}$ be two Banach algebras and let‎ ‎$\mathcal{M}$ be a Banach $\mathcal{B}$-bimodule‎. ‎Suppose that‎ ‎$\sigma:\mathcal{A} \rightarrow \mathcal{B}$ is a linear mapping and‎ ‎$d:\mathcal{A} \rightarrow \mathcal{M}$ is a $\sigma$-derivation‎. ‎We‎ ‎prove several results about automatic continuity of‎ ‎$\sigma$-derivations on Banach algebras‎. ‎In addition‎, ‎we define a‎ ‎notion for m-weakly continuous linear mapping and show that‎, ‎under‎ ‎certain conditions‎, ‎$d$ and $\sigma$ are m-weakly continuous‎. ‎Moreover‎, ‎we prove that if $\mathcal{A}$ is commutative and $\sigma‎: ‎\mathcal{A} \rightarrow \mathcal{A}$ is a continuous homomorphism‎ ‎such that $\sigma^{2} = \sigma$ then $\sigma d \sigma (\mathcal{A})‎ ‎\subseteq \sigma(Q(\mathcal{A})) \subseteq rad(\mathcal{A})$‎.

Citation

Download Citation

‎M‎. ‎Hassani‎. ‎S‎. ‎Hejazian. A‎. ‎Hosseini‎. ‎A‎. ‎Niknam‎. "Some results on $\sigma$-derivations." Ann. Funct. Anal. 2 (2) 75 - 84, 2011. https://doi.org/10.15352/afa/1399900196

Information

Published: 2011
First available in Project Euclid: 12 May 2014

zbMATH: 1276.47045
MathSciNet: MR2855288
Digital Object Identifier: 10.15352/afa/1399900196

Subjects:
Primary: 47B47
Secondary: 17B40

Keywords: $\sigma$-derivation , ‎$m$-weakly continuous‎ ‎linear mapping , derivation‎ , ‎quasi-nilpotent

Rights: Copyright © 2011 Tusi Mathematical Research Group

Vol.2 • No. 2 • 2011
Back to Top