Open Access
2011 A general iterative algorithm for nonexpansive mappings in Banach spaces
Bashir Ali, Yekini Shehu, ‎Godwin C‎. ‎Ugwunnadi
Ann. Funct. Anal. 2(2): 10-21 (2011). DOI: 10.15352/afa/1399900190

Abstract

Let $E$ be a real $q$-uniformly smooth Banach space whose duality map is weakly sequentially continuous. Let $T:E\to E$ be a nonexpansive mapping with $F(T)\neq\emptyset.$ Let $A:E\to E$ be an $\eta$-strongly accretive map which is also $\kappa$-Lipschitzian. Let $f:E\to E$ be a contraction map with coefficient $0\lt \alpha\lt1.$ Let a sequence $\{y_{n}\}$ be defined iteratively by $y_{0}\in E,~~ y_{n+1}=\alpha_n\gamma f(y_n)+(I-\alpha_n\mu A)Ty_n,n\geq0,$ where $\{\alpha_n\},~~\gamma$ and $\mu$ satisfy some appropriate conditions. Then, we prove that $\{y_{n}\}$ converges strongly to the unique solution $x^{*} \in F(T)$ of the variational inequality $\langle(\gamma f-\mu A)x^{*},j(y-x^{*})\rangle\leq0,~\forall~y\in F(T).$ Convergence of the correspondent implicit scheme is also proved without the assumption that $E$ has weakly sequentially continuous duality map. Our results are applicable in $l_{p}$ spaces, $1\lt p \lt \infty$.

Citation

Download Citation

Bashir Ali. Yekini Shehu. ‎Godwin C‎. ‎Ugwunnadi. "A general iterative algorithm for nonexpansive mappings in Banach spaces." Ann. Funct. Anal. 2 (2) 10 - 21, 2011. https://doi.org/10.15352/afa/1399900190

Information

Published: 2011
First available in Project Euclid: 12 May 2014

zbMATH: 1251.47055
MathSciNet: MR2855282
Digital Object Identifier: 10.15352/afa/1399900190

Subjects:
Primary: 47H09
Secondary: 47H10 , 47J20

Keywords: $\eta-$strongly accretive maps , ‎$\kappa-$Lipschitzian ‎maps , ‎$q-$uniformly smooth Banach spaces , ‎nonexpansive maps

Rights: Copyright © 2011 Tusi Mathematical Research Group

Vol.2 • No. 2 • 2011
Back to Top