Open Access
2011 Stability results for $C^*$-unitarizable groups
Rachid El Harti, Paulo R. Pinto
Ann. Funct. Anal. 2(2): 1-9 (2011). DOI: 10.15352/afa/1399900189

Abstract

‎We say that a locally compact group $G$ is $C^*$-unitarizable if its‎ ‎full group $C^*$-algebra $C^*(G)$ satisfies Kadison's similarity‎ ‎problem (SP)‎, ‎i.e. every bounded representation of $C^*(G)$ on a‎ ‎Hilbert space is similar to a *-representation‎. ‎We prove that‎ ‎locally compact and unitarizable groups are $C^*$-unitarizable‎. ‎For‎ ‎discrete groups‎, ‎we prove that $C^*$-unitarizable passes to‎ ‎quotients‎. ‎Moreover‎, ‎a given discrete group is $C^*$-unitarizable‎ ‎whenever we can find a normal and $C^*$-unitarizable subgroup with‎ ‎amenable quotient‎.

Citation

Download Citation

Rachid El Harti. Paulo R. Pinto. "Stability results for $C^*$-unitarizable groups." Ann. Funct. Anal. 2 (2) 1 - 9, 2011. https://doi.org/10.15352/afa/1399900189

Information

Published: 2011
First available in Project Euclid: 12 May 2014

zbMATH: 1255.46026
MathSciNet: MR2855281
Digital Object Identifier: 10.15352/afa/1399900189

Subjects:
Primary: 46L05
Secondary: ‎43A07‎ , ‎43A65 , 46L07

Keywords: ‎amenable group , ‎group $C^*$-algebra , ‎similarity problem , Unitarizable representation

Rights: Copyright © 2011 Tusi Mathematical Research Group

Vol.2 • No. 2 • 2011
Back to Top