Open Access
June 2020 Semiparametric Bayesian Markov analysis of personalized benefit–risk assessment
Dongyan Yan, Subharup Guha, Chul Ahn, Ram Tiwari
Ann. Appl. Stat. 14(2): 768-788 (June 2020). DOI: 10.1214/20-AOAS1323
Abstract

The development of systematic and structured approaches to assess benefit–risk of medical products is a major challenge for regulatory decision makers. Existing benefit–risk methods depend only on the frequencies of mutually exclusive and exhaustive categories in which the subjects fall, and the responses of individuals are allowed to belong to any of the other categories during their postwithdrawal visits. In this article we introduce a semiparametric Bayesian Markov model (SBMM) that treats the withdrawal category as an absorbing state and analyzes subject-level data for multiple visits, accounting for any within-patient dependencies in the response profiles. A log-odds ratio model is used to model the subject-level effects by assuming a ratio of transition probabilities with respect to a “reference” category. A Dirichlet process is used as a semiparametric model for the subject-level effects to flexibly capture the underlying distributions of the personalized response profiles without making strong parametric assumptions. This also allows the borrowing of strength between the patients and achieves dimension reduction by allocating similar response profiles patterns into an unknown number of latent clusters. We analyze a motivating clinical trial dataset to assess the personalized benefit–risks in each arm and evaluate the aggregated benefits and risks associated with the drug Exalgo.

References

1.

Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353–355. 0276.62010 10.1214/aos/1176342372 euclid.aos/1176342372Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353–355. 0276.62010 10.1214/aos/1176342372 euclid.aos/1176342372

2.

Brown, E. R. and Ibrahim, J. G. (2003). Bayesian approaches to joint cure-rate and longitudinal models with applications to cancer vaccine trials. Biometrics 59 686–693. 1210.62145 10.1111/1541-0420.00079Brown, E. R. and Ibrahim, J. G. (2003). Bayesian approaches to joint cure-rate and longitudinal models with applications to cancer vaccine trials. Biometrics 59 686–693. 1210.62145 10.1111/1541-0420.00079

3.

Camerlenghi, F., Lijoi, A., Orbanz, P. and Prünster, I. (2019). Distribution theory for hierarchical processes. Ann. Statist. 47 67–92. 07036195 10.1214/17-AOS1678 euclid.aos/1543568582Camerlenghi, F., Lijoi, A., Orbanz, P. and Prünster, I. (2019). Distribution theory for hierarchical processes. Ann. Statist. 47 67–92. 07036195 10.1214/17-AOS1678 euclid.aos/1543568582

4.

Chen, M.-H., Shao, Q.-M. and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation. Springer Series in Statistics. Springer, New York. 0949.65005Chen, M.-H., Shao, Q.-M. and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation. Springer Series in Statistics. Springer, New York. 0949.65005

5.

Chib, S. and Greenberg, E. (1994). Bayes inference in regression models with $\operatorname{ARMA}(p,q)$ errors. J. Econometrics 64 183–206. 0807.62065 10.1016/0304-4076(94)90063-9Chib, S. and Greenberg, E. (1994). Bayes inference in regression models with $\operatorname{ARMA}(p,q)$ errors. J. Econometrics 64 183–206. 0807.62065 10.1016/0304-4076(94)90063-9

6.

Chib, S., Greenberg, E. and Winkelmann, R. (1998). Posterior simulation and Bayes factors in panel count data models. J. Econometrics 86 33–54. 1041.62524 10.1016/S0304-4076(97)00108-5Chib, S., Greenberg, E. and Winkelmann, R. (1998). Posterior simulation and Bayes factors in panel count data models. J. Econometrics 86 33–54. 1041.62524 10.1016/S0304-4076(97)00108-5

7.

Chuang-Stein, C., Mohberg, N. R. and Sinkula, M. S. (1991). Three measures for simultaneously evaluating benefits and risks using categorical data from clinical trials. Stat. Med. 10 1349–1359.Chuang-Stein, C., Mohberg, N. R. and Sinkula, M. S. (1991). Three measures for simultaneously evaluating benefits and risks using categorical data from clinical trials. Stat. Med. 10 1349–1359.

8.

Claiborne, A. B., English, R. A. and Caruso, D. (2014). Characterizing and Communicating Uncertainty in the Assessment of Benefits and Risks of Pharmaceutical Products: Workshop Summary. National Academies Press, Washington, DC.Claiborne, A. B., English, R. A. and Caruso, D. (2014). Characterizing and Communicating Uncertainty in the Assessment of Benefits and Risks of Pharmaceutical Products: Workshop Summary. National Academies Press, Washington, DC.

9.

Costa, M. J. and Drury, T. (2018). Bayesian joint modelling of benefit and risk in drug development. Pharm. Stat. 17 248–263.Costa, M. J. and Drury, T. (2018). Bayesian joint modelling of benefit and risk in drug development. Pharm. Stat. 17 248–263.

10.

Costa, M. J., He, W., Jemiai, Y., Zhao, Y. and Di Casoli, C. (2017). The case for a Bayesian approach to benefit–risk assessment: Overview and future directions. Ther. Innov. Regul. Sci. 51 568–574.Costa, M. J., He, W., Jemiai, Y., Zhao, Y. and Di Casoli, C. (2017). The case for a Bayesian approach to benefit–risk assessment: Overview and future directions. Ther. Innov. Regul. Sci. 51 568–574.

11.

Cui, S., Zhao, Y. and Tiwari, R. C. (2016). Bayesian approach to personalized benefit–risk assessment. Stat. Biopharm. Res. 8 316–324.Cui, S., Zhao, Y. and Tiwari, R. C. (2016). Bayesian approach to personalized benefit–risk assessment. Stat. Biopharm. Res. 8 316–324.

12.

Dahl, D. B. (2006). Model-based clustering for expression data via a Dirichlet process mixture model. In Bayesian Inference for Gene Expression and Proteomics 201–218. Cambridge Univ. Press, Cambridge.Dahl, D. B. (2006). Model-based clustering for expression data via a Dirichlet process mixture model. In Bayesian Inference for Gene Expression and Proteomics 201–218. Cambridge Univ. Press, Cambridge.

13.

Entsuah, R. and Gorman, J. M. (2002). Global benefit–risk assessment of antidepressants: Venlafaxine XR and fluoxetine. J. Psychiatr. Res. 36 111–118.Entsuah, R. and Gorman, J. M. (2002). Global benefit–risk assessment of antidepressants: Venlafaxine XR and fluoxetine. J. Psychiatr. Res. 36 111–118.

14.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230. 0255.62037 10.1214/aos/1176342360 euclid.aos/1176342360Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230. 0255.62037 10.1214/aos/1176342360 euclid.aos/1176342360

15.

Gelber, R. D., Gelman, R. S. and Goldhirsch, A. (1989). A quality-of-life-oriented endpoint for comparing therapies. Biometrics 45 781–795. 0715.62262 10.2307/2531683Gelber, R. D., Gelman, R. S. and Goldhirsch, A. (1989). A quality-of-life-oriented endpoint for comparing therapies. Biometrics 45 781–795. 0715.62262 10.2307/2531683

16.

Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27 143–158. 0932.62043 10.1214/aos/1018031105 euclid.aos/1018031105Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27 143–158. 0932.62043 10.1214/aos/1018031105 euclid.aos/1018031105

17.

Ghosh, P., Basu, S. and Tiwari, R. C. (2009). Bayesian analysis of cancer rates from SEER program using parametric and semiparametric joinpoint regression models. J. Amer. Statist. Assoc. 104 439–452. 1388.62320 10.1198/jasa.2009.0038Ghosh, P., Basu, S. and Tiwari, R. C. (2009). Bayesian analysis of cancer rates from SEER program using parametric and semiparametric joinpoint regression models. J. Amer. Statist. Assoc. 104 439–452. 1388.62320 10.1198/jasa.2009.0038

18.

Glasziou, P. P., Simes, R. J. and Gelber, R. D. (1990). Quality adjusted survival analysis. Stat. Med. 9 1259–1276.Glasziou, P. P., Simes, R. J. and Gelber, R. D. (1990). Quality adjusted survival analysis. Stat. Med. 9 1259–1276.

19.

Gøtzsche, P. C. and Jørgensen, A. W. (2011). Opening up data at the European Medicines Agency. BMJ, Br. Med. J. 342.Gøtzsche, P. C. and Jørgensen, A. W. (2011). Opening up data at the European Medicines Agency. BMJ, Br. Med. J. 342.

20.

Guha, S. (2008). Posterior simulation in the generalized linear mixed model with semiparametric random effects. J. Comput. Graph. Statist. 17 410–425.Guha, S. (2008). Posterior simulation in the generalized linear mixed model with semiparametric random effects. J. Comput. Graph. Statist. 17 410–425.

21.

Ho, M.-W., Tu, W., Ghosh, P. and Tiwari, R. C. (2013). A nested Dirichlet process analysis of cluster randomized trial data with application in geriatric care assessment. J. Amer. Statist. Assoc. 108 48–68. 1379.62072 10.1080/01621459.2012.734164Ho, M.-W., Tu, W., Ghosh, P. and Tiwari, R. C. (2013). A nested Dirichlet process analysis of cluster randomized trial data with application in geriatric care assessment. J. Amer. Statist. Assoc. 108 48–68. 1379.62072 10.1080/01621459.2012.734164

22.

Ho, M., Saha, A., McCleary, K. K., Levitan, B., Christopher, S., Zandlo, K., Braithwaite, R. S. and Hauber, A. B. (2016). A framework for incorporating patient preferences regarding benefits and risks into regulatory assessment of medical technologies. Value Health 19 746–750.Ho, M., Saha, A., McCleary, K. K., Levitan, B., Christopher, S., Zandlo, K., Braithwaite, R. S. and Hauber, A. B. (2016). A framework for incorporating patient preferences regarding benefits and risks into regulatory assessment of medical technologies. Value Health 19 746–750.

23.

Holden, W. L., Juhaeri, J. and Dai, W. (2003). Benefit–risk analysis: A proposal using quantitative methods. Pharmacoepidemiol. Drug Saf. 12 611–616.Holden, W. L., Juhaeri, J. and Dai, W. (2003). Benefit–risk analysis: A proposal using quantitative methods. Pharmacoepidemiol. Drug Saf. 12 611–616.

24.

Hughes, D., Waddingham, E., Mt Isa, S., Goginsky, A., Chan, E., Downey, G. F., Hallgreen, C. E., Hockley, K. S., Juhaeri, J. et al. (2016). Recommendations for benefit–risk assessment methodologies and visual representations. Pharmacoepidemiol. Drug Saf. 25 251–262.Hughes, D., Waddingham, E., Mt Isa, S., Goginsky, A., Chan, E., Downey, G. F., Hallgreen, C. E., Hockley, K. S., Juhaeri, J. et al. (2016). Recommendations for benefit–risk assessment methodologies and visual representations. Pharmacoepidemiol. Drug Saf. 25 251–262.

25.

Ibrahim, J. G. and Chen, M.-H. (2000). Power prior distributions for regression models. Statist. Sci. 15 46–60.Ibrahim, J. G. and Chen, M.-H. (2000). Power prior distributions for regression models. Statist. Sci. 15 46–60.

26.

Ishwaran, H. and Zarepour, M. (2002). Dirichlet prior sieves in finite normal mixtures. Statist. Sinica 12 941–963. 1002.62028Ishwaran, H. and Zarepour, M. (2002). Dirichlet prior sieves in finite normal mixtures. Statist. Sinica 12 941–963. 1002.62028

27.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Statist. 9 249–265.Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Statist. 9 249–265.

28.

Norton, J. D. (2011). A longitudinal model and graphic for benefit–risk analysis, with case study. Drug Inf. J. 45 741–747.Norton, J. D. (2011). A longitudinal model and graphic for benefit–risk analysis, with case study. Drug Inf. J. 45 741–747.

29.

Payne, J. T. and Loken, M. K. (1975). A survey of the benefits and risks in the practice of radiology. CRC Crit. Rev. Clin. Radiol. Nucl. Med. 6 425–439.Payne, J. T. and Loken, M. K. (1975). A survey of the benefits and risks in the practice of radiology. CRC Crit. Rev. Clin. Radiol. Nucl. Med. 6 425–439.

30.

Pritchett, Y. and Tamura, R. (2008). The application of global benefit–risk assessment in clinical trial design and some statistical considerations. Pharm. Stat. 7 170–178.Pritchett, Y. and Tamura, R. (2008). The application of global benefit–risk assessment in clinical trial design and some statistical considerations. Pharm. Stat. 7 170–178.

31.

Rodríguez, A., Dunson, D. B. and Gelfand, A. E. (2008). The nested Dirichlet process. J. Amer. Statist. Assoc. 103 1131–1144.Rodríguez, A., Dunson, D. B. and Gelfand, A. E. (2008). The nested Dirichlet process. J. Amer. Statist. Assoc. 103 1131–1144.

32.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639–650. 0823.62007Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639–650. 0823.62007

33.

Sethuraman, J. and Tiwari, R. C. (1982). Convergence of Dirichlet measures and the interpretation of their parameter. In Statistical Decision Theory and Related Topics, III, Vol. 2 (West Lafayette, Ind., 1981) 305–315. Academic Press, New York.Sethuraman, J. and Tiwari, R. C. (1982). Convergence of Dirichlet measures and the interpretation of their parameter. In Statistical Decision Theory and Related Topics, III, Vol. 2 (West Lafayette, Ind., 1981) 305–315. Academic Press, New York.

34.

Shahbaba, B. and Neal, R. (2009). Nonlinear models using Dirichlet process mixtures. J. Mach. Learn. Res. 10 1829–1850. 1235.62069Shahbaba, B. and Neal, R. (2009). Nonlinear models using Dirichlet process mixtures. J. Mach. Learn. Res. 10 1829–1850. 1235.62069

35.

Yan, D., Guha, S., Ahn, C. and Tiwari, R. C. (2020). Suppelment to “Semiparametric Bayesian Markov analysis of personalized benefit–risk assessment.”  https://doi.org/10.1214/20-AOAS1323SUPP.Yan, D., Guha, S., Ahn, C. and Tiwari, R. C. (2020). Suppelment to “Semiparametric Bayesian Markov analysis of personalized benefit–risk assessment.”  https://doi.org/10.1214/20-AOAS1323SUPP.

36.

Zeger, S. L. and Karim, M. R. (1991). Generalized linear models with random effects; a Gibbs sampling approach. J. Amer. Statist. Assoc. 86 79–86. MR1137101 10.1080/01621459.1991.10475006Zeger, S. L. and Karim, M. R. (1991). Generalized linear models with random effects; a Gibbs sampling approach. J. Amer. Statist. Assoc. 86 79–86. MR1137101 10.1080/01621459.1991.10475006

37.

Zhao, Y., Zalkikar, J., Tiwari, R. C. and LaVange, L. M. (2014). A Bayesian approach for benefit–risk assessment. Stat. Biopharm. Res. 6 326–337.Zhao, Y., Zalkikar, J., Tiwari, R. C. and LaVange, L. M. (2014). A Bayesian approach for benefit–risk assessment. Stat. Biopharm. Res. 6 326–337.
Copyright © 2020 Institute of Mathematical Statistics
Dongyan Yan, Subharup Guha, Chul Ahn, and Ram Tiwari "Semiparametric Bayesian Markov analysis of personalized benefit–risk assessment," The Annals of Applied Statistics 14(2), 768-788, (June 2020). https://doi.org/10.1214/20-AOAS1323
Received: 1 February 2019; Published: June 2020
Vol.14 • No. 2 • June 2020
Back to Top