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The development of systematic and structured approaches to assess
benefit–risk of medical products is a major challenge for regulatory decision
makers. Existing benefit–risk methods depend only on the frequencies of mu-
tually exclusive and exhaustive categories in which the subjects fall, and the
responses of individuals are allowed to belong to any of the other categories
during their postwithdrawal visits. In this article we introduce a semiparamet-
ric Bayesian Markov model (SBMM) that treats the withdrawal category as
an absorbing state and analyzes subject-level data for multiple visits, account-
ing for any within-patient dependencies in the response profiles. A log-odds
ratio model is used to model the subject-level effects by assuming a ratio
of transition probabilities with respect to a “reference” category. A Dirich-
let process is used as a semiparametric model for the subject-level effects
to flexibly capture the underlying distributions of the personalized response
profiles without making strong parametric assumptions. This also allows the
borrowing of strength between the patients and achieves dimension reduction
by allocating similar response profiles patterns into an unknown number of
latent clusters. We analyze a motivating clinical trial dataset to assess the per-
sonalized benefit–risks in each arm and evaluate the aggregated benefits and
risks associated with the drug Exalgo.

1. Introduction. Benefit–risk (BR) assessment of treatments or medical products plays
an essential role in regulatory decision making in pre-market and post-market review pro-
cesses. Assessment typically considers comprehensive information on safety and effective-
ness and involves quantitative analyses as well as more subjective, qualitative weighing of ev-
idence. A key challenge is the characterization of uncertainty associated with benefit and risk
evaluation of medical products. The Institute of Medicine (IOM) has convened a workshop
to advance the development of systematic and structured approaches for regulatory decision
making (Claiborne, English and Caruso (2014)).

Our main statistical goal is the development of effective statistical methodology for eval-
uating the benefits and risks of medical products. For a motivating application, we explored
the clinical trial data described in Norton (2011). This randomized, double-blinded, placebo-
control clinical trial studied the benefits and risks associated with Exalgo, an extended release
hydromorphone product approved in 2010 for the management of moderate to severe pain in
opioid-tolerant patients. The clinical trial recruited 268 subjects and randomly assigned them
equally to the treatment and control arms. Each subject was followed up for eight visits, and
their outcomes were evaluated by a team of medical doctors.

In the Norton (2011) clinical trial, benefit is defined as a clinically important improvement,
as determined by medical officers of at least 30% daily pain reduction in a patient on a given
visit. Risk is defined as the occurrence of serious adverse events (AE), such as disability or
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TABLE 1
Outcomes of a clinical trial with binary response data

Benefit No benefit

No AE Category 1 Category 3
AE Category 2 Category 4
Withdrawal Category 5

death, or of moderately adverse events that “may be of sufficient severity to make patient un-
comfortable; performance of daily activities may be influenced; intervention may be needed.”
With these definitions the individual responses at each visit were grouped by medical officers
into one of five categories, as shown in Table 1. The categories range from most desirable
(category 1) to least desirable (category 5).

Subject withdrawals are not unusual in clinical trials such as Norton (2011) with with-
drawal rates of 50.7% and 67.9% for the treatment and control arm, respectively, at the last
visit. Reasons for withdrawal included loss of contact, inadequate benefit from the drug, and
occurrence of adverse events. In general, benefit and risk are not necessarily mutually exclu-
sive characteristics; a high-efficacy drug may also be associated with harmful side effects.
Furthermore, the BR tradeoff may vary over the course of the trial. For example, in the ear-
lier stages of a clinical trial some subjects report overall benefit but experience increasingly
adverse events as the trial progresses. This strongly suggests that BR associations should be
longitudinally evaluated for each patient.

Several quantitative measures for BR assessment have been proposed in the literature.
Payne and Loken summarized the BR ratio at the population level (Payne and Loken (1975)).
Gelber, Gelman and Goldhirsch (1989) combined population level BR measures into a sin-
gle quantity called Time Without Symptoms of Disease and Toxic Effects (TWiST), and
Glasziou, Simes and Gelber (1990) further generalized this to Quality-adjusted TWiST
(Q-TWiST). Norton (2011) developed a longitudinal visualization technique for BR eval-
uation over the course of a clinical trial. Holden, Juhaeri and Dai (2003) proposed using the
ratio of the number of subjects needed to treat for benefit to the number of subjects needed
to treat for risks. Pritchett and Tamura (2008) evaluated the robustness of the definitions of
“benefit” and “risk” and made suggestions on selected prespecified weights. Multiple-criteria
decision analysis (MCDA) has been utilized in assessing BR scores, especially for continuous
endpoints. This approach explicitly evaluates multiple conflicting criteria in decision making
and is the most commonly used quantitative framework in case studies (Gøtzsche and Jør-
gensen (2011), Hughes et al. (2016)). Bayesian inference, with its capability for incorporating
different sources of information and uncertainty, along with its links to optimal decision the-
ory provides a paradigm for quantitative analysis of BR tradeoff. Costa et al. (2017) provided
an overview of the state-of-the-art in Bayesian methodologies for quantitative BR assess-
ment and emphasized the importance of profiling subgroup-specific BR measures. Costa and
Drury (2018) proposed two Bayesian joint modeling approaches to account for the potential
dependence between efficacy and safety outcomes at the subject level.

The patient outcome categories given in Table 1 were first introduced by Chuang-Stein,
Mohberg and Sinkula (1991) to capture the BR profiles of each individual. Compared with the
aforementioned BR measures, the Global Benefit–Risk (GBR) scores proposed by Chuang-
Stein, Mohberg and Sinkula (1991) are relatively easy and straightforward to implement,
provided the BR categories are well defined in an application. Chuang-Stein, Mohberg and
Sinkula (1991) also proposed three new measures of BR assessment: one based on a weighted
linear combination of the estimated probabilities associated with the five categories, and the
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other two based on ratios of those probabilities. GBR scores have been applied to studies for
antidepressant drugs (Entsuah and Gorman (2002)). Zhao et al. (2014) proposed a different
BR measure using a generalized indicator function for each of the five categories and imple-
mented the analysis using Bayesian power priors (Ibrahim and Chen (2000)) that facilitated
a longitudinal BR assessment using various global measures.

A drawback of the above methods is that they ignore subject-level variability in the re-
sponses, often resulting in biased inferences for the BR measures. Cui, Zhao and Tiwari
(2016) proposed a Bayesian approach that incorporates subject-specific categorical effects.
Although it is an important step in the right direction, a drawback of this work is that it does
not realistically model subjects who are lost to subsequent follow-ups as a result of with-
drawal. The responses of these individuals are allowed to belong with positive probability to
any of the Table 1 categories even during their post-withdrawal visits. In clinical trials with
high withdrawal rates, which is a common feature of many studies, this unrealistic assumption
results in poor model fit. For example, applying the method of Cui, Zhao and Tiwari (2016)
to the Norton (2011) clinical trial, Figure 1 displays the 95% credible intervals of the categor-
ical probabilities for subject 86 belonging to the control arm. This subject withdrew from the
study at visit 3. However, as seen in the figure, after accounting for uncertainty, the probabil-
ity estimates for the nonwithdrawal categories are strictly positive during the postwithdrawal
visits. In fact, the estimated Category 3 probabilities for subject 86 are approximately 0.2 for
postwithdrawal visits 4–8.

As the above analysis illustrates, a limitation of existing statistical approaches is that they
fail to account for dependencies between the longitudinal responses of a subject. Motivated

FIG. 1. 95% credible intervals of marginal categorical probabilities for subject 86 from the control arm. Dashed
line indicates the observed category at each visit; this subject withdrew from the study at visit 3.
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by this, we propose modeling the transition probabilities between categories, treating the
withdrawal category as an absorbing state as well as taking subject-level category effects into
account. The idea of transition probabilities follows from the Markov property, where the
conditional probability distribution of future states of the process (conditional on both past
and present states) depends upon the present state. In a clinical trial, subject’s status at any
visit is highly informative in determining the status of the next visit. The transition prob-
abilities are modeled by a log-odds ratio model, the subject-level category effects are then
modeled through a Dirichlet process (Ferguson (1973)). BR measures are thereby defined
based on the transition probabilities.

The rest of this article is organized as follows. Section 2 reviews the benefit–risk cate-
gories and quantitative measures introduced in Chuang-Stein, Mohberg and Sinkula (1991)
and modifies the traditional definitions to accommodate Markov transition probabilities. Sec-
tion 3 describes the semiparametric Bayesian Markov model (SBMM). Section 4 presents the
MCMC sampling scheme. In Section 5 we present simulation studies to evaluate the proposed
model’s performance in estimating the subject-level transition probabilities. In Section 6 we
analyze the motivating clinical trial data using SBMM.

2. Benefit–risk categories and measures. In a longitudinal clinical trial setting, sup-
pose that the patients visit sites at K different time points. Suppose that the patient outcomes
at each visit can be classified into one of the five mutually exclusive and exhaustive cate-
gories: “benefit without AE, benefit with AE, no benefit, no AE, no benefit with AE” and
“withdrawal,” as listed in Table 1. These categories are progressively ordered from the most
desirable to the least desirable for the patient.

We consider the patient’s outcome at a given time point as beneficial if he or she has
transited to a “better” category since the last visit and consider the outcome to be risky if
the patient has transited to a “worse” category. Specifically, transitions from Category 1 to
1, Category 2 to 1 or 2, Category 3 to 1 or 2 and Category 4 to 1, 2 or 3 are all considered
favoring benefit. On the other hand, transitions from Category 1 to others, Category 2 to 3, 4
or 5, Category 3 to 3, 4 or 5 and Category 4 to 4 or 5 are considered favoring risk.

To evaluate the benefits and risks for each arm of the clinical study as well as compare
the two arms with respect to benefits and risks, we consider three measures first proposed in
Chuang-Stein, Mohberg and Sinkula (1991), namely, linear (BRL), ratio (BRR) and compos-
ite ratio (BRCR) measures, after adapting each to the graded BR interpretation associated with
the five outcome categories. Conditional on the event that the previous visit belonged to cate-
gory s, let psj denotes the unknown probability of observing category j . Let P = ((psj )) be
the J ×J transition probability matrix, with the last row corresponding to the withdrawal state
given by (p51, . . . , p55) = (0,0,0,0,1). With these definitions the BR measures of Chuang-
Stein, Mohberg and Sinkula (1991), adapted to the graded outcome categories of Table 1,
become

BRL(P ) = w11p11 +
3∑

s=2

2∑
j=1

wsjpsj +
3∑

j=1

w4jp4j

−
5∑

j=2

w1jp1j −
3∑

s=2

5∑
j=3

wsjpsj −
5∑

j=4

w4jp4j ,

(2.1)

BRR(P ) = (w11p11 + ∑3
s=2

∑2
j=1 wsjpsj + ∑3

j=1 w4jp4j )
ψ∑5

j=2 w1jp1j + ∑3
s=2

∑5
j=3 wsjpsj + ∑5

j=4 w4jp4j

, ψ > 0,

BRCR(P ) =
∑4

s=1 ws1ps1∑4
s=1 ws5ps5

( ∑3
s=2 ws2ps2 + ∑3

j=2 w4jp4j∑4
j=2 w1jp1j + ∑3

s=2
∑4

j=3 wsjpsj + w44p44

)φ

, φ > 0,



772 YAN, GUHA, AHN AND TIWARI

where wsj is a user-specified positive score associated with the ordered category pair (s, j)

for consecutive visits. The scores are chosen by the investigator to reflect the relative im-
portance of the transitions between categories to a researcher, clinician, patient or care
giver, when evaluating a treatment. Because the acceptability of risk depends on the achiev-
able benefit as well as available treatments, the scores may change with different dis-
eases or symptoms. In the motivating application we assume prespecified sets of weights,
w1 = (4,0.5,0.5,1,2), w2 = (2,1,1,1,3), w3 = (3,0.5,0,0.5,2) and w4 = (3,2,1,1,5),
representing the scores assigned to the five BR categories during the current visit when the
previous visit’s state equals the subscript s of vector ws .

The score BRL is a linear combination of the probabilities of the five benefit–risk cat-
egories. The ratio of benefit and risk with nonnegative exponent ψ reflecting the relative
importance of benefit to risk forms the basis of the ratio score, BRR. Composite ratio score
BRCR is based on a composite ratio of benefit and risk, where exponent φ is a nonnega-
tive constant and is used to give a different score to different benefit or risk categories. If
the constant φ equals zero, it represents the ratio of the best categories (transitions to ben-
efit without risk) over the worst category (withdrawal from any category). In this paper we
assumed ψ = 1 and φ = 1 in equation (2.1).

Similarities or differences in the posterior inferences provided by the different BR mea-
sures are expected to vary across datasets. For the motivating clinical trial data, the scores
BRL and log(BRR) give qualitatively similar results in Section 6, where the high withdrawal
rate of the study is shown to account for the slightly different results for score log(BRCR).

Chuang-Stein, Mohberg and Sinkula (1991) assumed that transition matrix P is shared
by all individuals belonging to a study arm (treatment and control) and are, respectively, de-
noted by P (T ) and P (C). For two-arm randomized trials, Chuang-Stein, Mohberg and Sinkula
(1991) proposed an asymptotic test for equality of benefit–risk measures between the arms.
Specifically, for the BR measures (2.1) evaluated for each arm, the absolute BR difference
(ABRD) between the treatment and control arms is defined as

ABRDL = BRL
(
P (T )) − BRL

(
P (C)),

ABRDR = log
{

BRR(P (T ))

BRR(P (C))

}
,(2.2)

ABRDCR = log
{

BRCR(P (T ))

BRCR(P (C))

}
.

The ABRD measures compare the differential BR measures between the study arms and are,
therefore, the primary parameters of interest; a positive (negative) value indicates that the
benefit is greater (less) than the risk for the treatment arm relative to the control arm. It can
be shown that the ABRDL values range from −24 to 24 for the previously mentioned user-
specified weights ws , s = 1, . . . ,5, for the Table 1 categories. Both ABRDR and ABRDCR
are on the log scale with values ranging from −∞ to ∞.

Additonally, Chuang-Stein, Mohberg and Sinkula (1991) derived 95% approximate, large-
sample frequentist confidence intervals (CIs) for the ABRD measures and used these CIs
to perform approximate hypothesis tests for the efficacy of the treatment. However, their
assumption of a common transition matrix for all individuals within a study arm may not be
unrealistic, and this is one of the motivations for the proposed method of this paper.

The Bayesian procedures developed in this paper are exact and are applicable irrespective
of the number of subjects participating in the clinical trial. They avoid making unrealistic as-
sumptions about the underlying distributions associated with the treatment and control arms,
including the existence of a common transition probability matrix for all subjects in an arm.
Additionally, the techniques are able to accommodate high withdrawal rates and adjust for
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dependencies between within-patient responses. The model details are presented in the next
section.

3. A semiparametric Bayesian Markov model. Consider a clinical trial consisting of
categorical outcomes Yik falling into J possible categories, or states, for subject i = 1, . . . ,N ,
and visit k = 1, . . . ,K . In the motivating application we have J = 5 categories as shown in
Table 1. For the first visit the initial states of the patients are assumed to be i.i.d. categorical
(i.e., generalized Bernoulli) distribution on J categories with probabilities q = (q1, . . . , qJ ).
The unknown probability vector is given a Dirichlet distribution on the unit simplex in RJ

with concentration parameter 1. That is,

Yi1 | q i.i.d.∼ CJ (q), i = 1,2, . . . ,N,(3.1)

q ∼ DJ

(
1

J
, . . . ,

1

J

)
.

Markov dependence. To account for longitudinal dependencies between the patient re-
sponses, we assume that outcome Yik depends on the history, Yi1, . . . , Yi,k−1, only through
the outcome Yi,k−1, for visit k = 2, . . . ,K . The outcomes rely on an underlying set of subject-
specific transition probabilities, P(Yik = j | Yi,k−1 = s), that may possibly depend on sub-
ject i. The probabilities are stationary because they do not depend on visit k. This framework
provides the flexibility of potentially allowing a different set of transition probabilities for
every individual. However, as we shall later see, dimension reduction in the large number
of subjects is achieved via Dirichlet process latent clusters for the subject-specific sets of
probabilities.

Labeling the withdrawal (absorbing) state as category J , we trivially obtain P(Yik = j |
Yi,k−1 = J ) = δJ (j), the Dirac delta function. In other words, once a patient has withdrawn
from the study, they would persist in the absorbing state throughout their remaining visits. On
the other hand, if the (k − 1) visit belongs to a nonabsorbing state s �= J , then the log-odds
of category j at visit k, relative to the reference category 1 are given by

log
{
P(Yik = j | Yi,k−1 = s)

P (Yik = 1 | Yi,k−1 = s)

}
= βisj , j = 2, . . . , J, and provided s �= J,(3.2)

where subject-specific log-odds vector β i = (βi12, . . . , βi1J , . . . , βi(J−1)2, . . . , βi(J−1)J ) rep-
resents the categorical effects.

Equivalently, P i = ((pisj )) is the J × J subject-specific transition probability uniquely
identified by vector βi . The last row of this matrix corresponds to the previous visit belonging
to the absorbing J th state and is, therefore, equal to the vector (0, . . . ,0,1) of length J . In
conjunction with equation (3.2), the elements of transition matrix P i are given by

pisj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
/[

1 +
J∑

t=2

exp(βist )

]
, s = 1, . . . , J − 1, and j = 1,

exp(βisj )
/[

1 +
J∑

t=2

exp(βist )

]
, s = 1, . . . , J − 1, and j = 2, . . . , J,

δJ (j) s = J, and j = 1, . . . , J.

(3.3)

Likelihood function. Let yik be the observed category of subject i on visit k. Let �

represent the set of model parameters (q,P 1, . . . ,P N); equivalently, the set of parameters
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(q,β1, . . . ,βN). With [·] denoting densities, assumptions (3.1) and (3.3) imply that the like-
lihood contribution of subject i is

Li (� | y) = {yi1, . . . , yiK | �} = qyi1

J−1∏
s=1

J∏
j=1

p
yisj

isj ,

where nisj = ∑K
k=2 I(yi,k−1 = s, yik = j) is the total number of transitions from category s

to category j by subject i over the K visits. The joint likelihood function is then L(� | y) =∏N
i=1 Li (� | y), with the corresponding log-likelihood function given by

(3.4)

l(� | y) =
N∑

i=1

logqyi1 +
N∑

i=1

J−1∑
s=1

J∑
j=2

nisjβisj

−
N∑

i=1

J−1∑
s=1

J∑
j=1

nisj log

{
1 +

J∑
t=2

exp(βist )

}
.

Modeling the patient population. Let the random assignment of the subjects to the treat-
ment or control arm of the clinical trial be recorded in the variable hi ∈ {1,2}, for subject
i = 1, . . . ,N , with the label 1 (2) representing the control (treatment) arm. Let N1 and N2,
respectively, denote the number of subjects assigned to the control and treatment arms. Within
each arm the population of patients may be regarded as an admixture of latent subpopulations
consisting of shared probability transition matrices. Subjects belonging to the same subpopu-
lation cluster in an arm have identical probability transition matrices P i (equivalently, identi-
cal log-odds vector β i ), whereas subjects belonging to different subpopulations have different
matrices and log-odds vectors. Consequently, in each arm subjects within latent clusters also
have identical BR measures, defined in equation (2.1).

Since the number of latent subpopulations and the common distribution of the a priori
exchangeable log-odds vectors are unknown, we assume that the vectors β1, . . . ,βN are
random draws from unknown arm-specific distributions which are themselves distributed
as a Dirichlet process (Ferguson (1973)). Specifically, let the N subject-specific log-odds
vectors, each of length (J − 1)2, follow either (J − 1)2-variate distribution G1 or G2, de-
pending on whether subjects are assigned to the control (“1”) or treatment (“2”) arm, with
P(G1 = G2) = 0 a priori. These distributions follow a Dirichlet process with concentration
parameter α and (J − 1)2-variate normal base distribution, G0:

βi

indep∼ Ghi
, i = 1, . . . ,N where

G1,G2
i.i.d.∼ DP(α,G0) with(3.5)

G0 = N(J−1)2(0,�0)

for a suitably chosen positive-definite matrix, �0. The assumption that p(G1 = G2) = 0 a
priori is reasonable because it implies that control and treatment arms have no shared sub-
populations for their probability transition matrices. In general, however, one might use a
nested Dirichlet process (Rodríguez, Dunson and Gelfand (2008)) for the random distribu-
tion of βi . More recently, Camerlenghi et al. (2019) discussed a generalization to a wider
class of nonparametric Bayesian models that are also applicable in the general situation.

Random distributions G are almost surely discrete for Dirichlet processes (Ferguson
(1973)). Furthermore, theoretical results (Ghosal, Ghosh and Ramamoorthi (1999)) guaran-
tee that any pair of true (discrete or continuous) arm-specific distributions for the βi’s belong
to the prior support of the Dirichlet process and can be consistently inferred a posteriori as
the number of subjects in each arm grows.
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We notice that the terms related to the set of vectors β1, . . . ,βN and to parameter q are
mutually separable in the log-likelihood expression (3.4). Consequently, since the priors in
expressions (3.1) and (3.5) are independent, these two sets of model parameters are a poste-
riori independent.

Allocation variable. Let us focus first on the control arm of the clinical trial; an exact
analogy holds for the treatment arm. As previously mentioned, the Dirichlet process allocates
the N1 subjects of the control arm to an unknown number, M1, of latent clusters so that M1 ≤
N1. Imagine that the patient-cluster allocation occurs through a variable, c

(1)
i , that equals m,

if the ith subject is assigned to the mth cluster of the control arm, so that c
(1)
i ∈ {1, . . . ,M1}.

Let c(1) = (c
(1)
1 , . . . , c

(1)
N1

) denote the allocation vector and the common values of the log-odds

vectors associated with the M1 clusters be ϕ
(1)
1 , . . . ,ϕ

(1)
M1

. Thus, β
(1)
i = ϕ

(1)

c
(1)
i

. Furthermore,

since the cluster labels are arbitrary, we assume without loss of generality that c
(1)
1 = 1, that

is, the first subject is assigned to cluster 1 of the control arm.
Random quantity M1 is asymptotically equivalent to α logN1 (Ishwaran and Zarepour

(2002)). In other words, the number of latent clusters is much smaller than the number of
patients, resulting in dimension reduction in datasets with large N1. The clustering feature of
Dirichlet process and the almost surely discreteness of random distribution G1 are evident
from the stick-breaking representation of Sethuraman and Tiwari (1982) and Sethuraman
(1994): If G1 ∼ DP(α,G0), then random distribution G1 takes the form

G1 =
∞∑
t=1

πtδt where

ξ t

i.i.d.∼ G0,

πt =

⎧⎪⎪⎨
⎪⎪⎩

ν1 if t = 1,

νt

t−1∏
u=1

(1 − νu) otherwise,

where δξ t
denotes a point mass at the “atom” ξ t . The distinct vectors ϕ1, . . . ,ϕM1

are a
subset of the infinite number of atoms, and the labels of the two sets of M1 parameters are
permutations of each other.

Neal (2000) and Shahbaba and Neal (2009) have shown that a Dirichlet process is the limit
of a finite mixture model as the number of mixture components grows to ∞. An equivalent
representation of Dirichlet processes is the Polya urn scheme of Blackwell and MacQueen
(1973), which characterizes the predictive distribution of allocation variable c

(1)
i conditional

on the history c
(1)
1 , . . . , c

(1)
i−1, as i increases from 2 to N1. For subject i, suppose there exist

N(i−1) distinct clusters among c
(1)
1 , . . . , c

(1)
i−1, with the mth cluster containing N

(i−1)
m number

of subjects. The predictive (prior) probability of allocation variable c
(1)
i is then

P
(
c
(1)
i = m | c(1)

1 , . . . , c
(1)
i−1

) ∝
{
N(i−1)

m if m = 1, . . . ,N(i−1),

α if m = N(i−1) + 1.

The first line corresponds to the event that subject i joins one of the clusters occupied by
the first i − 1 subjects. The second line corresponds to subject i opening a new cluster and
belonging to a different subpopulation than the previous i − 1 subjects.

By replacing superscript 1 by superscript 2 throughout, similar remarks apply to the treat-
ment arm. Prior (3.5) for the subject-specific vectors (β1, . . . ,βN) implies that these vectors
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are equivalent to the parameter set, (c(1),ϕ
(1)
1 , . . . ,ϕ

(1)
M1

, c(2),ϕ
(2)
1 , . . . ,ϕ

(2)
M2

). The model pa-

rameters are, therefore, regarded as � = (q, c(1),ϕ
(1)
1 , . . . ,ϕ

(1)
M1

, c(2),ϕ
(2)
1 , . . . ,ϕ

(2)
M2

). By our
earlier discussion, parameter q is a posteriori independent of the remaining model parameters
of set �. The aforementioned model is referred to as the semiparametric Bayesian Markov
model (SBMM).

4. Inference. The Bayesian model for the parameters � is complex, necessitating
simulated-based techniques such as MCMC for posterior inferences. We briefly outline the
iterative procedure in Section 4.1 for SBMM. Subsequently, the MCMC sample is processed
to address the scientific questions of interest as described in Section 4.

4.1. MCMC procedure. Starting from initial parameters values obtained from ad hoc
estimates, the model parameters are iteratively updated as described below.

Vector q . Due to conjugate prior (3.1) of parameter q characterizing the initial visit and
its a posteriori independence from the remaining model parameters, it can be shown that the
marginal posterior of q follows a known Dirichlet distribution on the unit simplex in RJ with
concentration parameter N + 1.

For these reasons, if this parameter vector is of interest, inferences are straightforward.
However, this is typically not the case, since parameter q is unrelated to the parameters as-
sociated with primary questions of interest, which is the comparison of the treatment and
control arms via ABRD measures (2.2); the property of posterior independence then allows
us to simply ignore parameter q and update the remaining model parameters.

Parameters β1, . . . ,βN . The full conditionals of subject-level category effects β1, . . . ,

βN are analytically intractable. Consequently, the Metropolis–Hastings algorithm is ap-
plied to conditionally update these parameters, along with the associated cluster alloca-
tions. Due to the posterior independence of the parameter sets (c(1),ϕ

(1)
1 , . . . ,ϕ

(1)
M1

) and

(c(2),ϕ
(2)
1 , . . . ,ϕ

(2)
M2

), we can independently update these parameters. For the clinical trial
arm indexed by h = 1,2:

1. We apply the nonconjugate “auxiliary parameter” algorithm of Neal (2000) to itera-
tively update the subject-cluster allocations, c

(h)
1 , . . . , c

(h)
Nh

, along with the distinct log-odds
vectors associated with any newly opened latent clusters.

2. Given the subject-cluster allocations, the distinct log-odds vectors ϕ
(h)
1 , . . . ,ϕ

(h)
Mh

are
iteratively updated. Due to the conditional nonconjugacy of the model for these parameters,
Gibbs sampling cannot be applied to generate draws from the full conditionals. We therefore
apply the Laplace approximation to derive a multivariate normal approximation for mak-
ing proposals for the distinct log-odds vectors. Refer to Zeger and Karim (1991), Chib and
Greenberg (1994), Winkelmann (1994) and Guha (2008) for the details.

Specifically, for latent cluster m = 1, . . . ,Mh, a new value is proposed from the (J − 1)2-
variate normal distribution obtained by the Laplace approximation and the current value of
ϕm. The normal proposal is appropriately scaled so that the overall Metropolis–Hastings
acceptance rates lie between 25% and 40%, ensuring proper mixing of the MCMC chain.
The proposed new value is accepted or rejected by a Metropolis–Hastings probability to
compensate for the difference between the true and approximate full conditional of ϕm.

The postburn-in MCMC draws are used for posterior inferences on the BR measures.
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4.2. Posterior inference on BR and ABRD measures. Bayes estimates for the ABRD
measures comparing the benefit and risk in the treatment and control arms, and previously
defined in equation (2.2), are obtained as follows:

1. Each iteration of the MCMC sample is processed to compute the overall BR measures,
defined in (2.1), for each study arm.

Specifically, for convenience let the three BR measures in equation (2.1) be generi-
cally denoted by BR(P i ) in subject i = 1, . . . ,N . We notice that, for MCMC iteration l,
the probability transition matrix P

(l)
i of subject i satisfies the relation, P

(l)
i = Q

(hi)(l)

c
(hi )(l)

i

,

where Q(h)(l)
m denotes the cluster-specific transition matrix corresponding to the cluster-

specific log-odds vector, ϕ
(h)(l)
m , for latent cluster m in arm h at MCMC iteration l. Let

N
(l)
mh = ∑N

i=1 I(c
(h)(l)
i = m,hi = h) be the number of patients belonging to the mth latent

cluster and hth study arm, for m = 1, . . . ,Mh and h = 1,2. Notice that Nh = ∑Mh

m=1 N
(l)
mh.

Then, based on the parameter values generated by MCMC iteration l, the overall BR mea-
sure for all patients belonging to a study arm has the following expression:

(4.1) BR
(
P

(l)
(h)

) = 1

Nh

Mh∑
m=1

N
(l)
mh · BR

(
Q(h)(l)

m

)
, h = 1,2

for MCMC iteration l = 1, . . . ,L.
Averaging over the MCMC sample, these values provide estimates for the BR measures

for each arm, as explained below.
2. The results are averaged over the MCMC sample of size L to obtain the overall BR

measure estimates for each study arm

(4.2) BR(P (h)) = 1

L

L∑
l=1

BR
(
P

(l)
(h)

)
for arm h = 1,2.

Standard errors are also estimated in a similar manner. The MCMC sample values could also
be utilized to make various other kinds of inferences. For example, marginal posteriors (via
histograms or density plots) and joint posteriors (via scatterplots or joint density plots) can
be estimated for the BR measures associated with the study arms.

3. Referring back to equation (2.1), we identify the measure BR(P (1)) as measure
BR(P (C)) and the measure BR(P (2)) as measure BR(P (T )). Then, Bayes estimates for the
three ABRD measures of equation (2.2), along with their estimated standard errors and 95%
posterior credible intervals, are immediately available by postprocessing the MCMC sample.

5. Simulation study. To assess the proposed method’s performance, we simulated
datasets from the Section 3 model to match key characteristics of the motivating Norton
(2011) clinical trial. For example, the responses were assumed to fall into J = 5 categories
with the last category representing the absorbing (withdrawal) state. The two arms corre-
spond to treatment and control, and N1 = N2 = 134 patients were assigned to each arm,
totaling N = 268 patients. Outcomes for each patient were generated for K number of visits,
where K belonged to the set {8,12,16}.

Generation strategy. The artificially generated patient population consisted of M1 =
M2 = 3 latent clusters having unique characteristics with respect to their transition proba-
bilities. Although it is not entirely accurate, these characteristics can be described in a loose
manner as follows. In cluster 1 subjects tend to move to “good” categories 1 or 2. In cluster
2 subjects tend to stay at their current categories. In cluster 3 subjects tend to move to “bad”
categories 3, 4 or 5. The three cluster-specific probability transition matrices were
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P ∗
1 =

⎛
⎜⎜⎜⎜⎜⎝

0.638 0.180 0.090 0.075 0.015
0.480 0.323 0.102 0.078 0.015
0.422 0.186 0.268 0.084 0.038
0.413 0.179 0.125 0.239 0.040

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

P ∗
2 =

⎛
⎜⎜⎜⎜⎜⎝

0.770 0.080 0.064 0.064 0.020
0.083 0.746 0.075 0.075 0.018
0.081 0.074 0.751 0.074 0.018
0.080 0.072 0.072 0.755 0.018

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

and

P ∗
3 =

⎛
⎜⎜⎜⎜⎜⎝

0.245 0.109 0.249 0.366 0.029
0.084 0.241 0.245 0.398 0.030
0.065 0.065 0.347 0.474 0.046
0.062 0.062 0.179 0.646 0.049

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

where the last row in each matrix corresponds to the absorbing state.
Within each study arm, 134 patients were randomly assigned to the three latent clusters by

mixture probabilities denoted by πh = (πh1, πh2, πh3) for arm h = 1,2. In other words, for
arm h the patients were independently assigned to the three latent clusters by a finite mix-
ture model with parameter πh. Two candidate sets of mixture probabilities were considered
for each arm: π∗

B = (0.5,0.3,0.2), representing the situation where the benefit outweighed
the risk for the arm, and π∗

R = (0.2,0.3,0.5), representing the situation where the risk out-
weighed the benefit for the arm.

Four scenarios for data generation were obtained in this manner. In Scenario 1 the benefit
outweighed the risk equally in the treatment and control arms. In Scenario 2 the risk out-
weighed the benefit equally in the treatment and control arms. We refer to Scenarios 1 and 2
as balanced. The true ABRD measures, defined in expression (2.2), are 0 in the balanced
scenarios. In Scenario 3 the benefit outweighed the risk for the treatment arm compared to
the control arm. In Scenario 4 the risk outweighed the benefit for the treatment arm compared
to the control arm. We refer to Scenarios 3 and 4 as unbalanced. The situation is illustrated
in Table 2. We observe that the true ABRD measures, defined in expression (2.2), are 0 in
Scenarios 1 and 2. The true ABRD measures are positive (negative) in Scenario 3 (4).

In this manner the subject-specific transition probability matrices P i , for i = 1, . . . ,N ,
were obtained in each scenario. For generating the first visit states of the patients, we assumed
a categorical distribution on the first four (nonabsorbing) states with probabilities following

TABLE 2
Scenarios for generating artificial datasets. The
scenarios on the diagonal are “balanced,” and

those on the off-diagonal are “unbalanced”

Treatment mixture π1

Control mixture π2 π∗
B π∗

R

π∗
B Scenario 1 Scenario 4

π∗
R Scenario 3 Scenario 2
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FIG. 2. For K = 8 visits, simulated data for Scenario 1 (benefit outweighing risk in both study arms).

the Dirichlet distribution, D4(1,1,1,1). The remaining K −1 visit categories for each patient
were generating via a Markov model relying on their subject-specific transition probability
matrix, P i .

Independent replications. For each of the four scenarios of Table 2 and number of visits
K ∈ {8,12,16}, 100 datasets were independently generated in the aforementioned manner.
The simulated outcomes for K = 8 visits for a randomly selected dataset under Scenario 1
are shown in Figure 2. We observe that the better categories dominate the worse categories
equally in the two study arms. Similarly, the outcomes for a randomly selected dataset under
Scenario 3 are shown in Figure 3; the better categories dominate the worse categories in the
treatment arm but not in the control arm.

We fit each of the 100 artificial datasets for each scenario and number of visits using
the Section 3 model and Section 4 inference procedure. For the Dirichlet process we as-
sumed concentration parameter α = 1, which corresponds to a “prior sample size” of one
observation, and base distribution G0 = N16(0,9I 16). We applied the MCMC procedures in
Section 4.1 to obtain posterior samples for the model parameters.

The SBMM methodology accommodates subject-by-subject similarities, accounts for lon-
gitudinal effect by modeling transition matrix at subject level and is able to capture the per-
sonalized response profiles, instead of merely calculating an overall average profile for each
study arm. For Scenario 1 and K = 8 visits, the accuracy with which the personalized BR
measures are detected is illustrated for two randomly chosen subjects in Figure 4. For a
broader evaluation of the accuracy with which the personalized BR measures are inferred,
for each scenario and summarizing over on the 100 datasets, Table 3 evaluates the proportion
of the 268 subjects (i.e., in the treatment and control arms combined) for whom the true BR

FIG. 3. For K = 8 visits, simulated data for Scenario 3 (benefit outweighing risk in the treatment but not in the
control arm).



780 YAN, GUHA, AHN AND TIWARI

FIG. 4. For K = 8 visits, BR measure of expression (2.1) for subject i = 57 from the treatment arm (left panel)
and subject i = 25 from the control arm (right panel) under Scenario 1. Grey triangles depict the true BR mea-
sures, black diamonds depict the posterior means and vertical bars indicate 95% posterior credible intervals.

measures were covered by the 95% posterior credible intervals of the inferred BR measures.
We find that, as the number of visits increases, greater accuracies are achieved.

Inferences on ABRD measures. For each combination of scenario and number of visits
K , Table 4 displays posterior credible intervals for the three ABRD measures of expression
(2.2) for a randomly selected dataset. We find that the intervals for balanced Scenarios 1
and 2 contain the true ABRD measure values of 0. Similarly, all the intervals for unbalanced
Scenario 3 (4) belong entirely on the positive (negative) part of the real line, corresponding
to the fact that the true ABRD measures are positive (negative). For K = 8 visits, Figure 5
plots the posterior credible intervals for (balanced) Scenario 1 and (unbalanced) Scenario 3
for the same dataset displayed in Table 4. We find that, as the number of visits increases, the
posterior credible intervals in Table 4 tend to become more precise.

TABLE 3
For each combination of scenario and number of visits and

averaging over the 100 datasets, mean proportion of subjects
(268 subjects from both arms) for which the true BR measures
are contained within the respective Bayesian credible intervals.

The standard errors are displayed in the parentheses

K = 8

Scenario BRL BRR BRCR

1 0.59 (0.05) 0.64 (0.05) 0.76 (0.04)
2 0.56 (0.05) 0.62 (0.05) 0.60 (0.05)
3 0.57 (0.05) 0.63 (0.05) 0.67 (0.05)
4 0.58 (0.05) 0.64 (0.05) 0.69 (0.05)

K = 12
1 0.77 (0.04) 0.79 (0.04) 0.81 (0.04)
2 0.78 (0.04) 0.81 (0.04) 0.82 (0.04)
3 0.76 (0.04) 0.79 (0.04) 0.80 (0.04)
4 0.79 (0.04) 0.81 (0.04) 0.83 (0.04)

K = 16
1 0.81 (0.04) 0.84 (0.04) 0.85 (0.04)
2 0.86 (0.03) 0.79 (0.04) 0.87 (0.03)
3 0.83 (0.04) 0.80 (0.04) 0.84 (0.04)
4 0.84 (0.04) 0.83 (0.04) 0.88 (0.03)
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FIG. 5. For K = 8 visits, 95% posterior credible intervals for the three ABRD measures of expression (2.2). The
left panel corresponds to the (balanced) Scenario 1, and the right panel corresponds to the (unbalanced, positive)
Scenario 3. Grey triangles depict the true BR measures; black diamonds depict the posterior means.

Summarizing over the 100 datasets for each combination of scenario and number of visits,
Table 5 displays the 95% Wilson confidence interval of the proportion of datasets for which
the true ABRD measures are contained within the Bayesian credible intervals. As the number
of visits increases, the Wilson confidence interval gets narrower. We observe that, although
there is variability over the scenarios and ABRD measures, the lower bound of the Wilson
confidence intervals are fairly close to 1, especially for K = 12 and K = 16. The findings in
Tables 4 and 5 are a consequence of the fact that the subject-specific transition probability
matrices, P 1, . . . ,P 268, are detected with increasing accuracy as K grows.

Clustering accuracy. Point estimates for the cluster-subject allocations, ĉ1, . . . , ĉN , can
be obtained by applying the technique of Dahl (2006). Ideally, a pair of subjects should be
placed in the same estimated cluster by the Dirichlet process if and only if they belong to the
same true cluster. To investigate the accuracy of the inferred allocations, we computed the

TABLE 4
95% posterior credible intervals for the different ABRD

measures of expression (2.2) for a randomly selected datasets
corresponding to each combination of scenario

and number of visits, K

K = 8

Scenario ABRDL ABRDR ABRDCR

1 (−0.75,0.58) (−0.25,0.34) (−0.94,0.97)

2 (−0.54,1.10) (−0.24,0.44) (−0.43,1.06)

3 (1.43,2.81) (0.49,0.99) (0.15,1.83)

4 (−2.13,−0.75) (−0.80,−0.23) (−1.73,−0.17)

K = 12
1 (−1.00,0.17) (−0.38,0.10) (−1.09,0.32)

2 (−0.40,0.70) (−0.24,0.28) (−0.67,0.44)

3 (1.37,2.52) (0.44,0.90) (0.15,1.46)

4 (−2.75,−1.59) (−1.03,−0.55) (−2.01,−0.67)

K = 16
1 (−0.73,0.26) (−0.31,0.11) (−0.82,0.31)

2 (−0.14,0.87) (−0.10,0.34) (−0.64,0.46)

3 (1.29,2.31) (0.38,0.82) (0.03,1.19)

4 (−2.14,−1.21) (−0.77,−0.36) (−1.50,−0.38)
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TABLE 5
95% Wilson intervals for the proportion of datasets for which
the true ABRD measures are contained within the respective

Bayesian credible intervals, for each combination of scenario
and number of visits

K = 8

Scenario ABRDL ABRDR ABRDCR

1 (0.80,0.93) (0.84,0.96) (0.95,1.00)

2 (0.75,0.90) (0.75,0.90) (0.80,0.93)

3 (0.80,0.93) (0.80,0.93) (0.62,0.80)

4 (0.95,1.00) (0.84,0.96) (0.66,0.83)

K = 12
1 (0.89,0.99) (0.89,0.99) (0.95,1.00)

2 (0.89,0.99) (0.89,0.99) (0.95,1.00)

3 (0.95,1.00) (0.95,1.00) (0.71,0.87)

4 (0.89,0.99) (0.89,0.99) (0.75,0.90)

K = 16
1 (0.89,0.99) (0.89,0.99) (0.89,0.99)

2 (0.89,0.99) (0.95,1.00) (0.84,0.96)

3 (0.95,1.00) (0.95,1.00) (0.71,0.87)

4 (0.95,1.00) (0.95,1.00) (0.80,0.93)

proportion of correctly coclustered subject pairs,

κ̂ = 1(N
2

) ∑
i1 �=i2∈(1,...,N)

I
{
I(ĉi1 = ĉi2) = I

(
c
(0)
i1

= c
(0)
i2

)}
,

where c
(0)
1 , . . . , c

(0)
N are the true allocations. Table 6 displays summaries of these proportions

for the mixture probabilities π∗
B and π∗

R , previously used to define the four scenarios (e.g.,
see Table 2). Greater accuracy is achieved as K increases, suggesting that the true allocations
are detected with greater precision along with the subject-specific transition probabilities.

6. Data analysis. We return to the motivating clinical trial data for the drug Exalgo
(Norton (2011)), previously described in Section 1. The data were analyzed using the pro-
posed model and inference procedures. We assume concentration parameter α = 1, and base-
line measure G0 = N16(0,9I 16) for the Dirichlet process prior (3.5).

The performance of the proposed SBMM was evaluated using the log pseudomarginal
likelihood (LPML) which has been extensively used in Bayesian model selection problems
(Chen, Shao and Ibrahim (2000), Brown and Ibrahim (2003), Ghosh, Basu and Tiwari (2009),
Ho et al. (2013)). For comparison, the LPML for the reference Bayesian method of Cui, Zhao
and Tiwari (2016) was also evaluated. For the two methods and each study arm, Table 7

TABLE 6
Mean proportion of correctly co-clustered subject pairs with

the standard error shown in parentheses

K = 8 K = 12 K = 16

π∗
B 0.775 (0.042) 0.854 (0.035) 0.889 (0.031)

π∗
R 0.756 (0.042) 0.846 (0.036) 0.892 (0.031)
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TABLE 7
LPML values for the Norton (2011) clinical trial data

Treatment arm Control arm

Nonwithdrawal Withdrawal Nonwithdrawal Withdrawal

SBMM −182.6 −204.2 −114.0 −251.7
Cui, Zhao and Tiwari (2016) −217.4 −425.1 −143.5 −557.6

presents the LPML values for two groups of subjects: those who withdrew and those who
did not withdraw from the study. Larger values of LPML indicate better model fit. We find
that SBMM has a larger LPML in every combination of group and study arm. However,
SBMM most dramatically outperforms the reference method for the subjects who withdrew
from the study. The results in Table 7 convincingly demonstrate the advantages of the SBMM
technique.

The differences between the performance of the two methods can be explained as follows.
As previously demonstrated in Figure 1, a serious shortcoming of the Cui, Zhao and Tiwari
(2016) approach is that it assigns high probabilities to the nonwithdrawal categories for sub-
jects who have withdrawn from the study. This results in poor model fit and low LPML val-
ues in clinical trials with high withdrawal rates; for the motivating study, the withdrawal rates
were 50.7% and 67.9% for the treatment and control arms, respectively. Table 8 displays the
percentage of subjects in each group for whom the SBMM method had a higher LPML than
the method of Cui, Zhao and Tiwari (2016). We conclude that the large proportion of subjects
who withdrew from the study, along with the poorness of model fit for these subjects by the
competing technique, is the key reason why SBMM convincingly outperforms the technique
of Cui, Zhao and Tiwari (2016) in the motivating study. Since clinical trials often have high
withdrawal rates, this feature of SBMM offers an important advantage in these investigations.

The proposed SBMM flexibly analyzes subject-level category effects and is thus able to
provide personalized BR measures defined in equation (2.1). For example, Figure 6 presents
95% posterior credible intervals of the measures BRL, log(BRR) and log(BRCR), aggregated
over the eight visits, for subject i = 122 belonging to the control arm.

To evaluate whether the drug Exalgo provides improved benefits compared to the control,
we evaluated the posterior distributions of the BR measures in each arm and of the ABRD
measures, as described in Section 4.2. The left panel of Figure 7 plots the posterior means
and 95% posterior intervals for benefit–risk measures BRL, log(BRR) and log(BRCR) for
each study arm. BRL and log(BRR) give similar results for both arms; however, log(BRCR)

gives negative posterior means. This is probably due to high withdrawal rate of the study,
since log(BRCR) emphasizes a ratio between the most beneficial (transitions to Category 1)
and the most risky transitions (transitions to Category 5). The plot shows that the benefits are
substantially greater in the treatment arm. To compare the benefit–risk measures between the

TABLE 8
Percentage of subjects for whom SBMM had higher LPML values than

Cui, Zhao and Tiwari (2016)

Treatment arm Control arm

Nonwithdrawal Withdrawal Nonwithdrawal Withdrawal

40.91% 100% 41.86% 97.80%
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FIG. 6. For subject 122 belonging to the control arm, 95% posterior credible intervals for personalized BR
measures of expression (2.1).

treatment and control, we constructed 95% posterior credible intervals for ABRDL, ABRDR
and ABRDCR in the right panel of Figure 7. All three intervals are above zero, providing
convincing evidence of greater benefits for the treatment arm.

The Dirichlet process specification of the SBMM model postulates that the population in
each arm is an admixture of latent subpopulations consisting of shared probability transi-
tion matrices. The inference procedure discovered M1 = 4 latent clusters in the control arm
and M2 = 5 latent clusters in the treatment arm. For the control arm the estimated mixture
probabilities of the latent clusters are 0.515, 0.380, 0.045 and 0.060. The estimated mixture
probabilities of the first four latent clusters of the treatment arm are 0.687, 0.172, 0.097 and
0.037, collectively accounting for 99.3% of the treatment population. The following discus-
sion focuses on these eight cluster–arm combinations.

To better assist the interpretation of the detected clusters, the BR measures, defined in
expression (2.1), were calculated for each latent cluster. In Figure 8 the measures BRL,
log(BRR) and log(BRCR) averaged over the cluster members are plotted for the detected
clusters in each arm. For treatment arm cluster 1, constituting 68.7% of the treatment arm
patient population, the benefit strongly outweighed the risk for measures BRL and log(BRR).
For treatment arm clusters 2, 3 and 4, the differences were less pronounced for linear mea-
sure BRL. In contrast, for control arm clusters 2 and 4 the risks outweighed the benefits; for
control arm clusters 1 and 3 the BR measures are negative but less evidently different from 0.

These results provide strong evidence that the benefits exceed the risks in the treatment
arm. Along with the uncertainty estimates, the results are reliable because the proposed
method appropriately adjusts for departures from parametric forms and borrows strength
among the subjects via the Dirichlet process. Additionally, SBMM accounts for within-

FIG. 7. The left panel displays 95% posterior credible intervals for BR measures of expression (2.1) marginal-
ized over all subjects in each arm. Black diamonds indicate posterior means. The right panel displays 95%
posterior credible intervals for the three ABRD measures of expression (2.2).



SBMM: SEMIPARAMETRIC BAYESIAN MARKOV MODEL 785

FIG. 8. BR measures for the four large latent clusters in the treatment arm (left panel) and the four clusters in
the control arm (right panel).

subject longitudinal dependencies via the Markov process to provide accurate inferences
about the benefits and risks of the drug Exalgo.

7. Discussion. This paper proposes an innovative semiparametric framework incorpo-
rating flexible unsupervised learning of the patient population in a clinical trial. It thereby
fosters a paradigm for future studies of personalized benefit–risk assessment. Specifically,
we present a novel application of a Markov model and the Dirichlet process by modeling
the transition probabilities and exploiting the clustering property, for estimating personalized
benefit–risk measures and for comparing aggregated benefit–risk measures in randomized
clinical trials. The analysis is carried out by modeling homogeneous transition probabilities
at the logit scale in a generalized linear mixed model. Common features of subject-level tran-
sition probabilities are characterized by the Dirichlet process. This model can be further gen-
eralized to modeling nonhomogeneous transition probabilities, such as including additional
visit effects. The model can also consider including baseline covariates and other factors,
such as regional effects, if the trial was conducted in multiple regions.

The modeling of transition probabilities incorporates longitudinal dependence among
benefit–risk categories at subject’s level and takes the nature of withdrawal category into
account by treating it as an absorbing state. The use of the Dirichlet process to model
the subject-level transition probabilities facilitates the handling of overparameterization by
putting the subjects in distinct but smaller number of clusters. To let the data play a bigger
role, we chose the mass parameter α to be 1; however, one can let α have its own prior dis-
tributions, such as an independent inverse-gamma or truncated normal on the positive real
line.

The proposed SBMM method is based on the benefit–risk scores using categorical out-
come which take a set of inherently continuous measurements of both benefit and risk end-
points and collapse all that into benefit–risk categories. This potentially could lead to loss of
information, primarily due to the boundaries between benefit and no-benefit and between risk
and no-risk. One may define benefit and risk in a finer gradation, for example, large benefit,
reasonable benefit and no-benefit as benefit category, and severe risk, less severe risk and
no-risk as risk category. Nevertheless, a Bayesian Markov model can be applied in a similar
fashion.

The choice of scores remains one of the most challenging areas of the quantitative benefit–
risk evaluation. Scores should be appropriately adjusted to the disease, the patient population
and the treatments under consideration. In this article we used the scores for benefit–risk
measures as suggested in Chuang-Stein, Mohberg and Sinkula (1991). The selection of scores
may be subjective and requires insights from the clinicians and other subject experts. As
suggested by Ho et al. (2016), which discussed an integrated benefit–risk measure, scores
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TABLE 9
Effect of transitions when ties are not allowed. “+” indicates

improvement and “−” indicates deterioration

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5

Cat. 1 + − − − −
Cat. 2 + + − − −
Cat. 3 + + − − −
Cat. 4 + + + − −

may be determined based on respective preference and measures for uncertainty aversion.
One may also use data-dependent scores or treat scores as random quantities.

A natural question is whether the proposed methodology is able to accommodate ties
among the ordered categories of the outcomes. This can indeed be achieved by minor modi-
fications to the expressions for the BR measures in equation (2.1). For example, the equation
of BRL(P ) in expression (2.1) implicitly does not allow ties. Table 9 shows the effect of each
transition from one category to another on the BR measures when the ties are not allowed.
For example, transitions from Category 1 to 1 are considered “improvement” (or at least,
not getting worse) and have a positive coefficient in calculating the BR measures. However,
transitions from Category 1 to any other categories are considered “deterioration” and have a
negative coefficient in calculating the BR measures.

On the other hand, if we wish to allow ties among the ordered categories, the most ideal
candidates would be between Category 2 and 3. These two may be considered similar in terms
of BR profile because Category 2 represents “benefit with AE” and Category 3 represents “no
benefit, no AE”. Table 10 shows the effect of each transition from one category to another on
BR measures when ties are allowed between Category 2 to 3. We find that transitions from
Category 2 to 3 and from Category 3 to 3, now have a positive effect on BR measures (instead
of a negative effect) because Category 2 and 3 are considered similar in terms of BR profile.
The linear BR measure is then modified as follows:

BRL(P ) = w11p11 +
3∑

s=2

3∑
j=1

wsjpsj +
3∑

j=1

w4jp4j

−
5∑

j=2

w1jp1j −
3∑

s=2

5∑
j=4

wsjpsj −
5∑

j=4

w4jp4j .

Ties among other categories could be accommodated by similar changes to the expressions
for the BR measures.

In this article we have treated “minor irritation” and “severe irritation” as the same level
of AE. However, we could further characterize AE into a more detailed gradation, according

TABLE 10
Effect of transitions when ties are allowed.“+” indicates

improvement and “−” indicates deterioration

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5

Cat. 1 + − − − −
Cat. 2 + + + − −
Cat. 3 + + + − −
Cat. 4 + + + − −
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to the nature of the condition and the treatment. This would introduce more categories in
Table 1 and would result in more transition probabilities that have to be estimated from the
data.

Finally, the proposed SBMM technique can be extended for the benefit–risk measures
based on continuous endpoints, such as mean reduction in cholesterol level from baseline to
the end of the trial.

APPENDIX: RUNNING THE R CODE FOR SBMM

The R code for SBMM is available under Supplementary Material (Yan et al. (2020)). To
replicate the analysis, simply run “Exalgo.R.” This is the master file that calls the necessary
functions in the other .R files.
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SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric Bayesian Markov analysis of personalized benefit–
risk assessment” (DOI: 10.1214/20-AOAS1323SUPP; .zip). R Code for SBMM.
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